GDB (API)
/home/stan/gdb/src/gdb/xstormy16-tdep.c
Go to the documentation of this file.
00001 /* Target-dependent code for the Sanyo Xstormy16a (LC590000) processor.
00002 
00003    Copyright (C) 2001-2013 Free Software Foundation, Inc.
00004 
00005    This file is part of GDB.
00006 
00007    This program is free software; you can redistribute it and/or modify
00008    it under the terms of the GNU General Public License as published by
00009    the Free Software Foundation; either version 3 of the License, or
00010    (at your option) any later version.
00011 
00012    This program is distributed in the hope that it will be useful,
00013    but WITHOUT ANY WARRANTY; without even the implied warranty of
00014    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015    GNU General Public License for more details.
00016 
00017    You should have received a copy of the GNU General Public License
00018    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
00019 
00020 #include "defs.h"
00021 #include "frame.h"
00022 #include "frame-base.h"
00023 #include "frame-unwind.h"
00024 #include "dwarf2-frame.h"
00025 #include "symtab.h"
00026 #include "gdbtypes.h"
00027 #include "gdbcmd.h"
00028 #include "gdbcore.h"
00029 #include "value.h"
00030 #include "dis-asm.h"
00031 #include "inferior.h"
00032 #include "gdb_string.h"
00033 #include "gdb_assert.h"
00034 #include "arch-utils.h"
00035 #include "floatformat.h"
00036 #include "regcache.h"
00037 #include "doublest.h"
00038 #include "osabi.h"
00039 #include "objfiles.h"
00040 
00041 enum gdb_regnum
00042 {
00043   /* Xstormy16 has 16 general purpose registers (R0-R15) plus PC.
00044      Functions will return their values in register R2-R7 as they fit.
00045      Otherwise a hidden pointer to an big enough area is given as argument
00046      to the function in r2.  Further arguments are beginning in r3 then.
00047      R13 is used as frame pointer when GCC compiles w/o optimization
00048      R14 is used as "PSW", displaying the CPU status.
00049      R15 is used implicitely as stack pointer.  */
00050   E_R0_REGNUM,
00051   E_R1_REGNUM,
00052   E_R2_REGNUM, E_1ST_ARG_REGNUM = E_R2_REGNUM, E_PTR_RET_REGNUM = E_R2_REGNUM,
00053   E_R3_REGNUM,
00054   E_R4_REGNUM,
00055   E_R5_REGNUM,
00056   E_R6_REGNUM,
00057   E_R7_REGNUM, E_LST_ARG_REGNUM = E_R7_REGNUM,
00058   E_R8_REGNUM,
00059   E_R9_REGNUM,
00060   E_R10_REGNUM,
00061   E_R11_REGNUM,
00062   E_R12_REGNUM,
00063   E_R13_REGNUM, E_FP_REGNUM = E_R13_REGNUM,
00064   E_R14_REGNUM, E_PSW_REGNUM = E_R14_REGNUM,
00065   E_R15_REGNUM, E_SP_REGNUM = E_R15_REGNUM,
00066   E_PC_REGNUM,
00067   E_NUM_REGS
00068 };
00069 
00070 /* Use an invalid address value as 'not available' marker.  */
00071 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
00072 
00073 struct xstormy16_frame_cache
00074 {
00075   /* Base address.  */
00076   CORE_ADDR base;
00077   CORE_ADDR pc;
00078   LONGEST framesize;
00079   int uses_fp;
00080   CORE_ADDR saved_regs[E_NUM_REGS];
00081   CORE_ADDR saved_sp;
00082 };
00083 
00084 /* Size of instructions, registers, etc.  */
00085 enum
00086 {
00087   xstormy16_inst_size = 2,
00088   xstormy16_reg_size = 2,
00089   xstormy16_pc_size = 4
00090 };
00091 
00092 /* Size of return datatype which fits into the remaining return registers.  */
00093 #define E_MAX_RETTYPE_SIZE(regnum)      ((E_LST_ARG_REGNUM - (regnum) + 1) \
00094                                         * xstormy16_reg_size)
00095 
00096 /* Size of return datatype which fits into all return registers.  */
00097 enum
00098 {
00099   E_MAX_RETTYPE_SIZE_IN_REGS = E_MAX_RETTYPE_SIZE (E_R2_REGNUM)
00100 };
00101 
00102 /* Function: xstormy16_register_name
00103    Returns the name of the standard Xstormy16 register N.  */
00104 
00105 static const char *
00106 xstormy16_register_name (struct gdbarch *gdbarch, int regnum)
00107 {
00108   static char *register_names[] = {
00109     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
00110     "r8", "r9", "r10", "r11", "r12", "r13",
00111     "psw", "sp", "pc"
00112   };
00113 
00114   if (regnum < 0 || regnum >= E_NUM_REGS)
00115     internal_error (__FILE__, __LINE__,
00116                     _("xstormy16_register_name: illegal register number %d"),
00117                     regnum);
00118   else
00119     return register_names[regnum];
00120 
00121 }
00122 
00123 static struct type *
00124 xstormy16_register_type (struct gdbarch *gdbarch, int regnum)
00125 {
00126   if (regnum == E_PC_REGNUM)
00127     return builtin_type (gdbarch)->builtin_uint32;
00128   else
00129     return builtin_type (gdbarch)->builtin_uint16;
00130 }
00131 
00132 /* Function: xstormy16_type_is_scalar
00133    Makes the decision if a given type is a scalar types.  Scalar
00134    types are returned in the registers r2-r7 as they fit.  */
00135 
00136 static int
00137 xstormy16_type_is_scalar (struct type *t)
00138 {
00139   return (TYPE_CODE(t) != TYPE_CODE_STRUCT
00140           && TYPE_CODE(t) != TYPE_CODE_UNION
00141           && TYPE_CODE(t) != TYPE_CODE_ARRAY);
00142 }
00143 
00144 /* Function: xstormy16_use_struct_convention 
00145    Returns non-zero if the given struct type will be returned using
00146    a special convention, rather than the normal function return method.
00147    7sed in the contexts of the "return" command, and of
00148    target function calls from the debugger.  */ 
00149 
00150 static int
00151 xstormy16_use_struct_convention (struct type *type)
00152 {
00153   return !xstormy16_type_is_scalar (type)
00154          || TYPE_LENGTH (type) > E_MAX_RETTYPE_SIZE_IN_REGS;
00155 } 
00156 
00157 /* Function: xstormy16_extract_return_value
00158    Find a function's return value in the appropriate registers (in
00159    regbuf), and copy it into valbuf.  */
00160 
00161 static void
00162 xstormy16_extract_return_value (struct type *type, struct regcache *regcache,
00163                                 gdb_byte *valbuf)
00164 {
00165   int len = TYPE_LENGTH (type);
00166   int i, regnum = E_1ST_ARG_REGNUM;
00167 
00168   for (i = 0; i < len; i += xstormy16_reg_size)
00169     regcache_raw_read (regcache, regnum++, valbuf + i);
00170 }
00171 
00172 /* Function: xstormy16_store_return_value
00173    Copy the function return value from VALBUF into the
00174    proper location for a function return. 
00175    Called only in the context of the "return" command.  */
00176 
00177 static void 
00178 xstormy16_store_return_value (struct type *type, struct regcache *regcache,
00179                               const gdb_byte *valbuf)
00180 {
00181   if (TYPE_LENGTH (type) == 1)
00182     {    
00183       /* Add leading zeros to the value.  */
00184       gdb_byte buf[xstormy16_reg_size];
00185       memset (buf, 0, xstormy16_reg_size);
00186       memcpy (buf, valbuf, 1);
00187       regcache_raw_write (regcache, E_1ST_ARG_REGNUM, buf);
00188     }
00189   else
00190     {
00191       int len = TYPE_LENGTH (type);
00192       int i, regnum = E_1ST_ARG_REGNUM;
00193 
00194       for (i = 0; i < len; i += xstormy16_reg_size)
00195         regcache_raw_write (regcache, regnum++, valbuf + i);
00196     }
00197 }
00198 
00199 static enum return_value_convention
00200 xstormy16_return_value (struct gdbarch *gdbarch, struct value *function,
00201                         struct type *type, struct regcache *regcache,
00202                         gdb_byte *readbuf, const gdb_byte *writebuf)
00203 {
00204   if (xstormy16_use_struct_convention (type))
00205     return RETURN_VALUE_STRUCT_CONVENTION;
00206   if (writebuf)
00207     xstormy16_store_return_value (type, regcache, writebuf);
00208   else if (readbuf)
00209     xstormy16_extract_return_value (type, regcache, readbuf);
00210   return RETURN_VALUE_REGISTER_CONVENTION;
00211 }
00212 
00213 static CORE_ADDR
00214 xstormy16_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
00215 {
00216   if (addr & 1)
00217     ++addr;
00218   return addr;
00219 }
00220 
00221 /* Function: xstormy16_push_dummy_call
00222    Setup the function arguments for GDB to call a function in the inferior.
00223    Called only in the context of a target function call from the debugger.
00224    Returns the value of the SP register after the args are pushed.  */
00225 
00226 static CORE_ADDR
00227 xstormy16_push_dummy_call (struct gdbarch *gdbarch,
00228                            struct value *function,
00229                            struct regcache *regcache,
00230                            CORE_ADDR bp_addr, int nargs,
00231                            struct value **args,
00232                            CORE_ADDR sp, int struct_return,
00233                            CORE_ADDR struct_addr)
00234 {
00235   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00236   CORE_ADDR stack_dest = sp;
00237   int argreg = E_1ST_ARG_REGNUM;
00238   int i, j;
00239   int typelen, slacklen;
00240   const gdb_byte *val;
00241   gdb_byte buf[xstormy16_pc_size];
00242 
00243   /* If struct_return is true, then the struct return address will
00244      consume one argument-passing register.  */
00245   if (struct_return)
00246     {
00247       regcache_cooked_write_unsigned (regcache, E_PTR_RET_REGNUM, struct_addr);
00248       argreg++;
00249     }
00250 
00251   /* Arguments are passed in R2-R7 as they fit.  If an argument doesn't
00252      fit in the remaining registers we're switching over to the stack.
00253      No argument is put on stack partially and as soon as we switched
00254      over to stack no further argument is put in a register even if it
00255      would fit in the remaining unused registers.  */
00256   for (i = 0; i < nargs && argreg <= E_LST_ARG_REGNUM; i++)
00257     {
00258       typelen = TYPE_LENGTH (value_enclosing_type (args[i]));
00259       if (typelen > E_MAX_RETTYPE_SIZE (argreg))
00260         break;
00261 
00262       /* Put argument into registers wordwise.  */
00263       val = value_contents (args[i]);
00264       for (j = 0; j < typelen; j += xstormy16_reg_size)
00265         {
00266           ULONGEST regval;
00267           int size = (typelen - j == 1) ? 1 : xstormy16_reg_size;
00268 
00269           regval = extract_unsigned_integer (val + j, size, byte_order);
00270           regcache_cooked_write_unsigned (regcache, argreg++, regval);
00271         }
00272     }
00273 
00274   /* Align SP */
00275   stack_dest = xstormy16_frame_align (gdbarch, stack_dest);
00276 
00277   /* Loop backwards through remaining arguments and push them on the stack,
00278      wordaligned.  */
00279   for (j = nargs - 1; j >= i; j--)
00280     {
00281       gdb_byte *val;
00282       struct cleanup *back_to;
00283       const gdb_byte *bytes = value_contents (args[j]);
00284 
00285       typelen = TYPE_LENGTH (value_enclosing_type (args[j]));
00286       slacklen = typelen & 1;
00287       val = xmalloc (typelen + slacklen);
00288       back_to = make_cleanup (xfree, val);
00289       memcpy (val, bytes, typelen);
00290       memset (val + typelen, 0, slacklen);
00291 
00292       /* Now write this data to the stack.  The stack grows upwards.  */
00293       write_memory (stack_dest, val, typelen + slacklen);
00294       stack_dest += typelen + slacklen;
00295       do_cleanups (back_to);
00296     }
00297 
00298   store_unsigned_integer (buf, xstormy16_pc_size, byte_order, bp_addr);
00299   write_memory (stack_dest, buf, xstormy16_pc_size);
00300   stack_dest += xstormy16_pc_size;
00301 
00302   /* Update stack pointer.  */
00303   regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, stack_dest);
00304 
00305   /* Return the new stack pointer minus the return address slot since
00306      that's what DWARF2/GCC uses as the frame's CFA.  */
00307   return stack_dest - xstormy16_pc_size;
00308 }
00309 
00310 /* Function: xstormy16_scan_prologue
00311    Decode the instructions within the given address range.
00312    Decide when we must have reached the end of the function prologue.
00313    If a frame_info pointer is provided, fill in its saved_regs etc.
00314 
00315    Returns the address of the first instruction after the prologue.  */
00316 
00317 static CORE_ADDR
00318 xstormy16_analyze_prologue (struct gdbarch *gdbarch,
00319                             CORE_ADDR start_addr, CORE_ADDR end_addr,
00320                             struct xstormy16_frame_cache *cache,
00321                             struct frame_info *this_frame)
00322 {
00323   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00324   CORE_ADDR next_addr;
00325   ULONGEST inst, inst2;
00326   LONGEST offset;
00327   int regnum;
00328 
00329   /* Initialize framesize with size of PC put on stack by CALLF inst.  */
00330   cache->saved_regs[E_PC_REGNUM] = 0;
00331   cache->framesize = xstormy16_pc_size;
00332 
00333   if (start_addr >= end_addr)
00334     return end_addr;
00335 
00336   for (next_addr = start_addr;
00337        next_addr < end_addr; next_addr += xstormy16_inst_size)
00338     {
00339       inst = read_memory_unsigned_integer (next_addr,
00340                                            xstormy16_inst_size, byte_order);
00341       inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size,
00342                                             xstormy16_inst_size, byte_order);
00343 
00344       if (inst >= 0x0082 && inst <= 0x008d)     /* push r2 .. push r13 */
00345         {
00346           regnum = inst & 0x000f;
00347           cache->saved_regs[regnum] = cache->framesize;
00348           cache->framesize += xstormy16_reg_size;
00349         }
00350 
00351       /* Optional stack allocation for args and local vars <= 4 byte.  */
00352       else if (inst == 0x301f || inst == 0x303f)       /* inc r15, #0x1/#0x3 */
00353         {
00354           cache->framesize += ((inst & 0x0030) >> 4) + 1;
00355         }
00356 
00357       /* optional stack allocation for args and local vars > 4 && < 16 byte */
00358       else if ((inst & 0xff0f) == 0x510f)       /* 51Hf   add r15, #0xH */
00359         {
00360           cache->framesize += (inst & 0x00f0) >> 4;
00361         }
00362 
00363       /* Optional stack allocation for args and local vars >= 16 byte.  */
00364       else if (inst == 0x314f && inst2 >= 0x0010) /* 314f HHHH add r15, #0xH */
00365         {
00366           cache->framesize += inst2;
00367           next_addr += xstormy16_inst_size;
00368         }
00369 
00370       else if (inst == 0x46fd)  /* mov r13, r15 */
00371         {
00372           cache->uses_fp = 1;
00373         }
00374 
00375       /* optional copying of args in r2-r7 to r10-r13.  */
00376       /* Probably only in optimized case but legal action for prologue.  */
00377       else if ((inst & 0xff00) == 0x4600        /* 46SD   mov rD, rS */
00378                && (inst & 0x00f0) >= 0x0020 && (inst & 0x00f0) <= 0x0070
00379                && (inst & 0x000f) >= 0x00a0 && (inst & 0x000f) <= 0x000d)
00380         ;
00381 
00382       /* Optional copying of args in r2-r7 to stack.  */
00383       /* 72DS HHHH   mov.b (rD, 0xHHHH), r(S-8) 
00384          (bit3 always 1, bit2-0 = reg) */
00385       /* 73DS HHHH   mov.w (rD, 0xHHHH), r(S-8) */
00386       else if ((inst & 0xfed8) == 0x72d8 && (inst & 0x0007) >= 2)
00387         {
00388           regnum = inst & 0x0007;
00389           /* Only 12 of 16 bits of the argument are used for the
00390              signed offset.  */
00391           offset = (LONGEST) (inst2 & 0x0fff);
00392           if (offset & 0x0800)
00393             offset -= 0x1000;
00394 
00395           cache->saved_regs[regnum] = cache->framesize + offset;
00396           next_addr += xstormy16_inst_size;
00397         }
00398 
00399       else                      /* Not a prologue instruction.  */
00400         break;
00401     }
00402 
00403   return next_addr;
00404 }
00405 
00406 /* Function: xstormy16_skip_prologue
00407    If the input address is in a function prologue, 
00408    returns the address of the end of the prologue;
00409    else returns the input address.
00410 
00411    Note: the input address is likely to be the function start, 
00412    since this function is mainly used for advancing a breakpoint
00413    to the first line, or stepping to the first line when we have
00414    stepped into a function call.  */
00415 
00416 static CORE_ADDR
00417 xstormy16_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
00418 {
00419   CORE_ADDR func_addr = 0, func_end = 0;
00420   const char *func_name;
00421 
00422   if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
00423     {
00424       struct symtab_and_line sal;
00425       struct symbol *sym;
00426       struct xstormy16_frame_cache cache;
00427       CORE_ADDR plg_end;
00428 
00429       memset (&cache, 0, sizeof cache);
00430 
00431       /* Don't trust line number debug info in frameless functions.  */
00432       plg_end = xstormy16_analyze_prologue (gdbarch, func_addr, func_end,
00433                                             &cache, NULL);
00434       if (!cache.uses_fp)
00435         return plg_end;
00436 
00437       /* Found a function.  */
00438       sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
00439       /* Don't use line number debug info for assembly source files.  */
00440       if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
00441         {
00442           sal = find_pc_line (func_addr, 0);
00443           if (sal.end && sal.end < func_end)
00444             {
00445               /* Found a line number, use it as end of prologue.  */
00446               return sal.end;
00447             }
00448         }
00449       /* No useable line symbol.  Use result of prologue parsing method.  */
00450       return plg_end;
00451     }
00452 
00453   /* No function symbol -- just return the PC.  */
00454 
00455   return (CORE_ADDR) pc;
00456 }
00457 
00458 /* The epilogue is defined here as the area at the end of a function,
00459    either on the `ret' instruction itself or after an instruction which
00460    destroys the function's stack frame.  */
00461 static int
00462 xstormy16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
00463 {
00464   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00465   CORE_ADDR func_addr = 0, func_end = 0;
00466 
00467   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
00468     {
00469       ULONGEST inst, inst2;
00470       CORE_ADDR addr = func_end - xstormy16_inst_size;
00471 
00472       /* The Xstormy16 epilogue is max. 14 bytes long.  */
00473       if (pc < func_end - 7 * xstormy16_inst_size)
00474         return 0;
00475 
00476       /* Check if we're on a `ret' instruction.  Otherwise it's
00477          too dangerous to proceed.  */
00478       inst = read_memory_unsigned_integer (addr,
00479                                            xstormy16_inst_size, byte_order);
00480       if (inst != 0x0003)
00481         return 0;
00482 
00483       while ((addr -= xstormy16_inst_size) >= func_addr)
00484         {
00485           inst = read_memory_unsigned_integer (addr,
00486                                                xstormy16_inst_size,
00487                                                byte_order);
00488           if (inst >= 0x009a && inst <= 0x009d) /* pop r10...r13 */
00489             continue;
00490           if (inst == 0x305f || inst == 0x307f) /* dec r15, #0x1/#0x3 */
00491             break;
00492           inst2 = read_memory_unsigned_integer (addr - xstormy16_inst_size,
00493                                                 xstormy16_inst_size,
00494                                                 byte_order);
00495           if (inst2 == 0x314f && inst >= 0x8000)      /* add r15, neg. value */
00496             {
00497               addr -= xstormy16_inst_size;
00498               break;
00499             }
00500           return 0;
00501         }
00502       if (pc > addr)
00503         return 1;
00504     }
00505   return 0;
00506 }
00507 
00508 static const unsigned char *
00509 xstormy16_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
00510                               int *lenptr)
00511 {
00512   static unsigned char breakpoint[] = { 0x06, 0x0 };
00513   *lenptr = sizeof (breakpoint);
00514   return breakpoint;
00515 }
00516 
00517 /* Given a pointer to a jump table entry, return the address
00518    of the function it jumps to.  Return 0 if not found.  */
00519 static CORE_ADDR
00520 xstormy16_resolve_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
00521 {
00522   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00523   struct obj_section *faddr_sect = find_pc_section (faddr);
00524 
00525   if (faddr_sect)
00526     {
00527       LONGEST inst, inst2, addr;
00528       gdb_byte buf[2 * xstormy16_inst_size];
00529 
00530       /* Return faddr if it's not pointing into the jump table.  */
00531       if (strcmp (faddr_sect->the_bfd_section->name, ".plt"))
00532         return faddr;
00533 
00534       if (!target_read_memory (faddr, buf, sizeof buf))
00535         {
00536           inst = extract_unsigned_integer (buf,
00537                                            xstormy16_inst_size, byte_order);
00538           inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
00539                                             xstormy16_inst_size, byte_order);
00540           addr = inst2 << 8 | (inst & 0xff);
00541           return addr;
00542         }
00543     }
00544   return 0;
00545 }
00546 
00547 /* Given a function's address, attempt to find (and return) the
00548    address of the corresponding jump table entry.  Return 0 if
00549    not found.  */
00550 static CORE_ADDR
00551 xstormy16_find_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
00552 {
00553   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00554   struct obj_section *faddr_sect = find_pc_section (faddr);
00555 
00556   if (faddr_sect)
00557     {
00558       struct obj_section *osect;
00559 
00560       /* Return faddr if it's already a pointer to a jump table entry.  */
00561       if (!strcmp (faddr_sect->the_bfd_section->name, ".plt"))
00562         return faddr;
00563 
00564       ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
00565       {
00566         if (!strcmp (osect->the_bfd_section->name, ".plt"))
00567           break;
00568       }
00569 
00570       if (osect < faddr_sect->objfile->sections_end)
00571         {
00572           CORE_ADDR addr, endaddr;
00573 
00574           addr = obj_section_addr (osect);
00575           endaddr = obj_section_endaddr (osect);
00576 
00577           for (; addr < endaddr; addr += 2 * xstormy16_inst_size)
00578             {
00579               LONGEST inst, inst2, faddr2;
00580               gdb_byte buf[2 * xstormy16_inst_size];
00581 
00582               if (target_read_memory (addr, buf, sizeof buf))
00583                 return 0;
00584               inst = extract_unsigned_integer (buf,
00585                                                xstormy16_inst_size,
00586                                                byte_order);
00587               inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
00588                                                 xstormy16_inst_size,
00589                                                 byte_order);
00590               faddr2 = inst2 << 8 | (inst & 0xff);
00591               if (faddr == faddr2)
00592                 return addr;
00593             }
00594         }
00595     }
00596   return 0;
00597 }
00598 
00599 static CORE_ADDR
00600 xstormy16_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
00601 {
00602   struct gdbarch *gdbarch = get_frame_arch (frame);
00603   CORE_ADDR tmp = xstormy16_resolve_jmp_table_entry (gdbarch, pc);
00604 
00605   if (tmp && tmp != pc)
00606     return tmp;
00607   return 0;
00608 }
00609 
00610 /* Function pointers are 16 bit.  The address space is 24 bit, using
00611    32 bit addresses.  Pointers to functions on the XStormy16 are implemented
00612    by using 16 bit pointers, which are either direct pointers in case the
00613    function begins below 0x10000, or indirect pointers into a jump table.
00614    The next two functions convert 16 bit pointers into 24 (32) bit addresses
00615    and vice versa.  */
00616 
00617 static CORE_ADDR
00618 xstormy16_pointer_to_address (struct gdbarch *gdbarch,
00619                               struct type *type, const gdb_byte *buf)
00620 {
00621   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00622   enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
00623   CORE_ADDR addr
00624     = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
00625 
00626   if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
00627     {
00628       CORE_ADDR addr2 = xstormy16_resolve_jmp_table_entry (gdbarch, addr);
00629       if (addr2)
00630         addr = addr2;
00631     }
00632 
00633   return addr;
00634 }
00635 
00636 static void
00637 xstormy16_address_to_pointer (struct gdbarch *gdbarch,
00638                               struct type *type, gdb_byte *buf, CORE_ADDR addr)
00639 {
00640   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00641   enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
00642 
00643   if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
00644     {
00645       CORE_ADDR addr2 = xstormy16_find_jmp_table_entry (gdbarch, addr);
00646       if (addr2)
00647         addr = addr2;
00648     }
00649   store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
00650 }
00651 
00652 static struct xstormy16_frame_cache *
00653 xstormy16_alloc_frame_cache (void)
00654 {
00655   struct xstormy16_frame_cache *cache;
00656   int i;
00657 
00658   cache = FRAME_OBSTACK_ZALLOC (struct xstormy16_frame_cache);
00659 
00660   cache->base = 0;
00661   cache->saved_sp = 0;
00662   cache->pc = 0;
00663   cache->uses_fp = 0;
00664   cache->framesize = 0;
00665   for (i = 0; i < E_NUM_REGS; ++i)
00666     cache->saved_regs[i] = REG_UNAVAIL;
00667 
00668   return cache;
00669 }
00670 
00671 static struct xstormy16_frame_cache *
00672 xstormy16_frame_cache (struct frame_info *this_frame, void **this_cache)
00673 {
00674   struct gdbarch *gdbarch = get_frame_arch (this_frame);
00675   struct xstormy16_frame_cache *cache;
00676   CORE_ADDR current_pc;
00677   int i;
00678 
00679   if (*this_cache)
00680     return *this_cache;
00681 
00682   cache = xstormy16_alloc_frame_cache ();
00683   *this_cache = cache;
00684 
00685   cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
00686   if (cache->base == 0)
00687     return cache;
00688 
00689   cache->pc = get_frame_func (this_frame);
00690   current_pc = get_frame_pc (this_frame);
00691   if (cache->pc)
00692     xstormy16_analyze_prologue (gdbarch, cache->pc, current_pc,
00693                                 cache, this_frame);
00694 
00695   if (!cache->uses_fp)
00696     cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
00697 
00698   cache->saved_sp = cache->base - cache->framesize;
00699 
00700   for (i = 0; i < E_NUM_REGS; ++i)
00701     if (cache->saved_regs[i] != REG_UNAVAIL)
00702       cache->saved_regs[i] += cache->saved_sp;
00703 
00704   return cache;
00705 }
00706 
00707 static struct value *
00708 xstormy16_frame_prev_register (struct frame_info *this_frame, 
00709                                void **this_cache, int regnum)
00710 {
00711   struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
00712                                                                this_cache);
00713   gdb_assert (regnum >= 0);
00714 
00715   if (regnum == E_SP_REGNUM && cache->saved_sp)
00716     return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
00717 
00718   if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
00719     return frame_unwind_got_memory (this_frame, regnum,
00720                                     cache->saved_regs[regnum]);
00721 
00722   return frame_unwind_got_register (this_frame, regnum, regnum);
00723 }
00724 
00725 static void
00726 xstormy16_frame_this_id (struct frame_info *this_frame, void **this_cache,
00727                          struct frame_id *this_id)
00728 {
00729   struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
00730                                                                this_cache);
00731 
00732   /* This marks the outermost frame.  */
00733   if (cache->base == 0)
00734     return;
00735 
00736   *this_id = frame_id_build (cache->saved_sp, cache->pc);
00737 }
00738 
00739 static CORE_ADDR
00740 xstormy16_frame_base_address (struct frame_info *this_frame, void **this_cache)
00741 {
00742   struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
00743                                                                this_cache);
00744   return cache->base;
00745 }
00746 
00747 static const struct frame_unwind xstormy16_frame_unwind = {
00748   NORMAL_FRAME,
00749   default_frame_unwind_stop_reason,
00750   xstormy16_frame_this_id,
00751   xstormy16_frame_prev_register,
00752   NULL,
00753   default_frame_sniffer
00754 };
00755 
00756 static const struct frame_base xstormy16_frame_base = {
00757   &xstormy16_frame_unwind,
00758   xstormy16_frame_base_address,
00759   xstormy16_frame_base_address,
00760   xstormy16_frame_base_address
00761 };
00762 
00763 static CORE_ADDR
00764 xstormy16_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
00765 {
00766   return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
00767 }
00768 
00769 static CORE_ADDR
00770 xstormy16_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
00771 {
00772   return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
00773 }
00774 
00775 static struct frame_id
00776 xstormy16_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
00777 {
00778   CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
00779   return frame_id_build (sp, get_frame_pc (this_frame));
00780 }
00781 
00782 
00783 /* Function: xstormy16_gdbarch_init
00784    Initializer function for the xstormy16 gdbarch vector.
00785    Called by gdbarch.  Sets up the gdbarch vector(s) for this target.  */
00786 
00787 static struct gdbarch *
00788 xstormy16_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
00789 {
00790   struct gdbarch *gdbarch;
00791 
00792   /* find a candidate among the list of pre-declared architectures.  */
00793   arches = gdbarch_list_lookup_by_info (arches, &info);
00794   if (arches != NULL)
00795     return (arches->gdbarch);
00796 
00797   gdbarch = gdbarch_alloc (&info, NULL);
00798 
00799   /*
00800    * Basic register fields and methods, datatype sizes and stuff.
00801    */
00802 
00803   set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
00804   set_gdbarch_num_pseudo_regs (gdbarch, 0);
00805   set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
00806   set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
00807   set_gdbarch_register_name (gdbarch, xstormy16_register_name);
00808   set_gdbarch_register_type (gdbarch, xstormy16_register_type);
00809 
00810   set_gdbarch_char_signed (gdbarch, 0);
00811   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
00812   set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
00813   set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
00814   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
00815 
00816   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
00817   set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
00818   set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
00819 
00820   set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
00821   set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
00822   set_gdbarch_dwarf2_addr_size (gdbarch, 4);
00823 
00824   set_gdbarch_address_to_pointer (gdbarch, xstormy16_address_to_pointer);
00825   set_gdbarch_pointer_to_address (gdbarch, xstormy16_pointer_to_address);
00826 
00827   /* Stack grows up.  */
00828   set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
00829 
00830   /*
00831    * Frame Info
00832    */
00833   set_gdbarch_unwind_sp (gdbarch, xstormy16_unwind_sp);
00834   set_gdbarch_unwind_pc (gdbarch, xstormy16_unwind_pc);
00835   set_gdbarch_dummy_id (gdbarch, xstormy16_dummy_id);
00836   set_gdbarch_frame_align (gdbarch, xstormy16_frame_align);
00837   frame_base_set_default (gdbarch, &xstormy16_frame_base);
00838 
00839   set_gdbarch_skip_prologue (gdbarch, xstormy16_skip_prologue);
00840   set_gdbarch_in_function_epilogue_p (gdbarch,
00841                                       xstormy16_in_function_epilogue_p);
00842 
00843   /* These values and methods are used when gdb calls a target function.  */
00844   set_gdbarch_push_dummy_call (gdbarch, xstormy16_push_dummy_call);
00845   set_gdbarch_breakpoint_from_pc (gdbarch, xstormy16_breakpoint_from_pc);
00846   set_gdbarch_return_value (gdbarch, xstormy16_return_value);
00847 
00848   set_gdbarch_skip_trampoline_code (gdbarch, xstormy16_skip_trampoline_code);
00849 
00850   set_gdbarch_print_insn (gdbarch, print_insn_xstormy16);
00851 
00852   gdbarch_init_osabi (info, gdbarch);
00853 
00854   dwarf2_append_unwinders (gdbarch);
00855   frame_unwind_append_unwinder (gdbarch, &xstormy16_frame_unwind);
00856 
00857   return gdbarch;
00858 }
00859 
00860 /* Function: _initialize_xstormy16_tdep
00861    Initializer function for the Sanyo Xstormy16a module.
00862    Called by gdb at start-up.  */
00863 
00864 /* -Wmissing-prototypes */
00865 extern initialize_file_ftype _initialize_xstormy16_tdep;
00866 
00867 void
00868 _initialize_xstormy16_tdep (void)
00869 {
00870   register_gdbarch_init (bfd_arch_xstormy16, xstormy16_gdbarch_init);
00871 }
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Defines