GDB (API)
|
00001 /* Target dependent code for GDB on TI C6x systems. 00002 00003 Copyright (C) 2010-2013 Free Software Foundation, Inc. 00004 Contributed by Andrew Jenner <andrew@codesourcery.com> 00005 Contributed by Yao Qi <yao@codesourcery.com> 00006 00007 This file is part of GDB. 00008 00009 This program is free software; you can redistribute it and/or modify 00010 it under the terms of the GNU General Public License as published by 00011 the Free Software Foundation; either version 3 of the License, or 00012 (at your option) any later version. 00013 00014 This program is distributed in the hope that it will be useful, 00015 but WITHOUT ANY WARRANTY; without even the implied warranty of 00016 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00017 GNU General Public License for more details. 00018 00019 You should have received a copy of the GNU General Public License 00020 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 00021 00022 #include "defs.h" 00023 #include "frame.h" 00024 #include "frame-unwind.h" 00025 #include "frame-base.h" 00026 #include "trad-frame.h" 00027 #include "dwarf2-frame.h" 00028 #include "symtab.h" 00029 #include "inferior.h" 00030 #include "gdbtypes.h" 00031 #include "gdbcore.h" 00032 #include "gdbcmd.h" 00033 #include "target.h" 00034 #include "dis-asm.h" 00035 #include "regcache.h" 00036 #include "value.h" 00037 #include "symfile.h" 00038 #include "arch-utils.h" 00039 #include "floatformat.h" 00040 #include "glibc-tdep.h" 00041 #include "infcall.h" 00042 #include "regset.h" 00043 #include "tramp-frame.h" 00044 #include "linux-tdep.h" 00045 #include "solib.h" 00046 #include "objfiles.h" 00047 #include "gdb_assert.h" 00048 #include "osabi.h" 00049 #include "tic6x-tdep.h" 00050 #include "language.h" 00051 #include "target-descriptions.h" 00052 00053 #include "features/tic6x-c64xp.c" 00054 #include "features/tic6x-c64x.c" 00055 #include "features/tic6x-c62x.c" 00056 00057 #define TIC6X_OPCODE_SIZE 4 00058 #define TIC6X_FETCH_PACKET_SIZE 32 00059 00060 #define INST_S_BIT(INST) ((INST >> 1) & 1) 00061 #define INST_X_BIT(INST) ((INST >> 12) & 1) 00062 00063 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 }; 00064 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 }; 00065 00066 struct tic6x_unwind_cache 00067 { 00068 /* The frame's base, optionally used by the high-level debug info. */ 00069 CORE_ADDR base; 00070 00071 /* The previous frame's inner most stack address. Used as this 00072 frame ID's stack_addr. */ 00073 CORE_ADDR cfa; 00074 00075 /* The address of the first instruction in this function */ 00076 CORE_ADDR pc; 00077 00078 /* Which register holds the return address for the frame. */ 00079 int return_regnum; 00080 00081 /* The offset of register saved on stack. If register is not saved, the 00082 corresponding element is -1. */ 00083 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS]; 00084 }; 00085 00086 00087 /* Name of TI C6x core registers. */ 00088 static const char *const tic6x_register_names[] = 00089 { 00090 "A0", "A1", "A2", "A3", /* 0 1 2 3 */ 00091 "A4", "A5", "A6", "A7", /* 4 5 6 7 */ 00092 "A8", "A9", "A10", "A11", /* 8 9 10 11 */ 00093 "A12", "A13", "A14", "A15", /* 12 13 14 15 */ 00094 "B0", "B1", "B2", "B3", /* 16 17 18 19 */ 00095 "B4", "B5", "B6", "B7", /* 20 21 22 23 */ 00096 "B8", "B9", "B10", "B11", /* 24 25 26 27 */ 00097 "B12", "B13", "B14", "B15", /* 28 29 30 31 */ 00098 "CSR", "PC", /* 32 33 */ 00099 }; 00100 00101 /* This array maps the arguments to the register number which passes argument 00102 in function call according to C6000 ELF ABI. */ 00103 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 }; 00104 00105 /* This is the implementation of gdbarch method register_name. */ 00106 00107 static const char * 00108 tic6x_register_name (struct gdbarch *gdbarch, int regno) 00109 { 00110 if (regno < 0) 00111 return NULL; 00112 00113 if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) 00114 return tdesc_register_name (gdbarch, regno); 00115 else if (regno >= ARRAY_SIZE (tic6x_register_names)) 00116 return ""; 00117 else 00118 return tic6x_register_names[regno]; 00119 } 00120 00121 /* This is the implementation of gdbarch method register_type. */ 00122 00123 static struct type * 00124 tic6x_register_type (struct gdbarch *gdbarch, int regno) 00125 { 00126 00127 if (regno == TIC6X_PC_REGNUM) 00128 return builtin_type (gdbarch)->builtin_func_ptr; 00129 else 00130 return builtin_type (gdbarch)->builtin_uint32; 00131 } 00132 00133 static void 00134 tic6x_setup_default (struct tic6x_unwind_cache *cache) 00135 { 00136 int i; 00137 00138 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++) 00139 cache->reg_saved[i] = -1; 00140 } 00141 00142 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR); 00143 static int tic6x_register_number (int reg, int side, int crosspath); 00144 00145 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly. 00146 Bail out early if CURRENT_PC is reached. Returns the address of the first 00147 instruction after the prologue. */ 00148 00149 static CORE_ADDR 00150 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc, 00151 const CORE_ADDR current_pc, 00152 struct tic6x_unwind_cache *cache, 00153 struct frame_info *this_frame) 00154 { 00155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00156 unsigned long inst; 00157 unsigned int src_reg, base_reg, dst_reg; 00158 int i; 00159 CORE_ADDR pc = start_pc; 00160 CORE_ADDR return_pc = start_pc; 00161 int frame_base_offset_to_sp = 0; 00162 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */ 00163 int non_stw_insn_counter = 0; 00164 00165 if (start_pc >= current_pc) 00166 return_pc = current_pc; 00167 00168 cache->base = 0; 00169 00170 /* The landmarks in prologue is one or two SUB instructions to SP. 00171 Instructions on setting up dsbt are in the last part of prologue, if 00172 needed. In maxim, prologue can be divided to three parts by two 00173 `sub sp, xx, sp' insns. */ 00174 00175 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the 00176 2nd one is optional. */ 00177 while (pc < current_pc) 00178 { 00179 int offset = 0; 00180 00181 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc); 00182 00183 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0 00184 || (inst & 0x0ffc) == 0x9c0) 00185 { 00186 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */ 00187 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f, 00188 INST_S_BIT (inst), 0); 00189 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f, 00190 INST_S_BIT (inst), 0); 00191 00192 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM) 00193 { 00194 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to 00195 offset. The constant offset is decoded in bit 13-17 in all 00196 these three kinds of instructions. */ 00197 unsigned int ucst5 = (inst >> 13) & 0x1f; 00198 00199 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */ 00200 frame_base_offset_to_sp += ucst5 << 2; 00201 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */ 00202 frame_base_offset_to_sp += ucst5 << 1; 00203 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */ 00204 frame_base_offset_to_sp += ucst5; 00205 else 00206 gdb_assert_not_reached ("unexpected instruction"); 00207 00208 return_pc = pc + 4; 00209 } 00210 } 00211 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */ 00212 { 00213 /* The y bit determines which file base is read from. */ 00214 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, 00215 (inst >> 7) & 1, 0); 00216 00217 if (base_reg == TIC6X_SP_REGNUM) 00218 { 00219 src_reg = tic6x_register_number ((inst >> 23) & 0x1f, 00220 INST_S_BIT (inst), 0); 00221 00222 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2; 00223 00224 return_pc = pc + 4; 00225 } 00226 non_stw_insn_counter = 0; 00227 } 00228 else 00229 { 00230 non_stw_insn_counter++; 00231 /* Following instruction sequence may be emitted in prologue: 00232 00233 <+0>: subah .D2 b15,28,b15 00234 <+4>: or .L2X 0,a4,b0 00235 <+8>: || stw .D2T2 b14,*+b15(56) 00236 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220> 00237 <+16>:|| stw .D2T1 a10,*+b15(48) 00238 <+20>:stw .D2T2 b3,*+b15(52) 00239 <+24>:stw .D2T1 a4,*+b15(40) 00240 00241 we should look forward for next instruction instead of breaking loop 00242 here. So far, we allow almost two sequential non-stw instructions 00243 in prologue. */ 00244 if (non_stw_insn_counter >= 2) 00245 break; 00246 } 00247 00248 00249 pc += 4; 00250 } 00251 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like, 00252 ldw .D2T2 *+b14(0),b14 */ 00253 inst = tic6x_fetch_instruction (gdbarch, pc); 00254 /* The s bit determines which file dst will be loaded into, same effect as 00255 other places. */ 00256 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0); 00257 /* The y bit (bit 7), instead of s bit, determines which file base be 00258 used. */ 00259 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0); 00260 00261 if ((inst & 0x164) == 0x64 /* ldw */ 00262 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */ 00263 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */ 00264 { 00265 return_pc = pc + 4; 00266 } 00267 00268 if (this_frame) 00269 { 00270 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM); 00271 00272 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1) 00273 { 00274 /* If the FP now holds an offset from the CFA then this is a frame 00275 which uses the frame pointer. */ 00276 00277 cache->cfa = get_frame_register_unsigned (this_frame, 00278 TIC6X_FP_REGNUM); 00279 } 00280 else 00281 { 00282 /* FP doesn't hold an offset from the CFA. If SP still holds an 00283 offset from the CFA then we might be in a function which omits 00284 the frame pointer. */ 00285 00286 cache->cfa = cache->base + frame_base_offset_to_sp; 00287 } 00288 } 00289 00290 /* Adjust all the saved registers such that they contain addresses 00291 instead of offsets. */ 00292 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++) 00293 if (cache->reg_saved[i] != -1) 00294 cache->reg_saved[i] = cache->base + cache->reg_saved[i]; 00295 00296 return return_pc; 00297 } 00298 00299 /* This is the implementation of gdbarch method skip_prologue. */ 00300 00301 static CORE_ADDR 00302 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) 00303 { 00304 CORE_ADDR func_addr; 00305 struct tic6x_unwind_cache cache; 00306 00307 /* See if we can determine the end of the prologue via the symbol table. 00308 If so, then return either PC, or the PC after the prologue, whichever is 00309 greater. */ 00310 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) 00311 { 00312 CORE_ADDR post_prologue_pc 00313 = skip_prologue_using_sal (gdbarch, func_addr); 00314 if (post_prologue_pc != 0) 00315 return max (start_pc, post_prologue_pc); 00316 } 00317 00318 /* Can't determine prologue from the symbol table, need to examine 00319 instructions. */ 00320 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache, 00321 NULL); 00322 } 00323 00324 /* This is the implementation of gdbarch method breakpiont_from_pc. */ 00325 00326 static const gdb_byte * 00327 tic6x_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr, 00328 int *bp_size) 00329 { 00330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 00331 00332 *bp_size = 4; 00333 00334 if (tdep == NULL || tdep->breakpoint == NULL) 00335 { 00336 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch)) 00337 return tic6x_bkpt_illegal_opcode_be; 00338 else 00339 return tic6x_bkpt_illegal_opcode_le; 00340 } 00341 else 00342 return tdep->breakpoint; 00343 } 00344 00345 /* This is the implementation of gdbarch method print_insn. */ 00346 00347 static int 00348 tic6x_print_insn (bfd_vma memaddr, disassemble_info *info) 00349 { 00350 return print_insn_tic6x (memaddr, info); 00351 } 00352 00353 static void 00354 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, 00355 struct dwarf2_frame_state_reg *reg, 00356 struct frame_info *this_frame) 00357 { 00358 /* Mark the PC as the destination for the return address. */ 00359 if (regnum == gdbarch_pc_regnum (gdbarch)) 00360 reg->how = DWARF2_FRAME_REG_RA; 00361 00362 /* Mark the stack pointer as the call frame address. */ 00363 else if (regnum == gdbarch_sp_regnum (gdbarch)) 00364 reg->how = DWARF2_FRAME_REG_CFA; 00365 00366 /* The above was taken from the default init_reg in dwarf2-frame.c 00367 while the below is c6x specific. */ 00368 00369 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as 00370 callee-save. */ 00371 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31)) 00372 reg->how = DWARF2_FRAME_REG_SAME_VALUE; 00373 else 00374 /* All other registers are caller-save. */ 00375 reg->how = DWARF2_FRAME_REG_UNDEFINED; 00376 } 00377 00378 /* This is the implementation of gdbarch method unwind_pc. */ 00379 00380 static CORE_ADDR 00381 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 00382 { 00383 gdb_byte buf[8]; 00384 00385 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf); 00386 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); 00387 } 00388 00389 /* This is the implementation of gdbarch method unwind_sp. */ 00390 00391 static CORE_ADDR 00392 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) 00393 { 00394 return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM); 00395 } 00396 00397 00398 /* Frame base handling. */ 00399 00400 static struct tic6x_unwind_cache* 00401 tic6x_frame_unwind_cache (struct frame_info *this_frame, 00402 void **this_prologue_cache) 00403 { 00404 struct gdbarch *gdbarch = get_frame_arch (this_frame); 00405 CORE_ADDR current_pc; 00406 struct tic6x_unwind_cache *cache; 00407 00408 if (*this_prologue_cache) 00409 return *this_prologue_cache; 00410 00411 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache); 00412 (*this_prologue_cache) = cache; 00413 00414 cache->return_regnum = TIC6X_RA_REGNUM; 00415 00416 tic6x_setup_default (cache); 00417 00418 cache->pc = get_frame_func (this_frame); 00419 current_pc = get_frame_pc (this_frame); 00420 00421 /* Prologue analysis does the rest... */ 00422 if (cache->pc != 0) 00423 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame); 00424 00425 return cache; 00426 } 00427 00428 static void 00429 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache, 00430 struct frame_id *this_id) 00431 { 00432 struct tic6x_unwind_cache *cache = 00433 tic6x_frame_unwind_cache (this_frame, this_cache); 00434 00435 /* This marks the outermost frame. */ 00436 if (cache->base == 0) 00437 return; 00438 00439 (*this_id) = frame_id_build (cache->cfa, cache->pc); 00440 } 00441 00442 static struct value * 00443 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache, 00444 int regnum) 00445 { 00446 struct tic6x_unwind_cache *cache = 00447 tic6x_frame_unwind_cache (this_frame, this_cache); 00448 00449 gdb_assert (regnum >= 0); 00450 00451 /* The PC of the previous frame is stored in the RA register of 00452 the current frame. Frob regnum so that we pull the value from 00453 the correct place. */ 00454 if (regnum == TIC6X_PC_REGNUM) 00455 regnum = cache->return_regnum; 00456 00457 if (regnum == TIC6X_SP_REGNUM && cache->cfa) 00458 return frame_unwind_got_constant (this_frame, regnum, cache->cfa); 00459 00460 /* If we've worked out where a register is stored then load it from 00461 there. */ 00462 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1) 00463 return frame_unwind_got_memory (this_frame, regnum, 00464 cache->reg_saved[regnum]); 00465 00466 return frame_unwind_got_register (this_frame, regnum, regnum); 00467 } 00468 00469 static CORE_ADDR 00470 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache) 00471 { 00472 struct tic6x_unwind_cache *info 00473 = tic6x_frame_unwind_cache (this_frame, this_cache); 00474 return info->base; 00475 } 00476 00477 static const struct frame_unwind tic6x_frame_unwind = 00478 { 00479 NORMAL_FRAME, 00480 default_frame_unwind_stop_reason, 00481 tic6x_frame_this_id, 00482 tic6x_frame_prev_register, 00483 NULL, 00484 default_frame_sniffer 00485 }; 00486 00487 static const struct frame_base tic6x_frame_base = 00488 { 00489 &tic6x_frame_unwind, 00490 tic6x_frame_base_address, 00491 tic6x_frame_base_address, 00492 tic6x_frame_base_address 00493 }; 00494 00495 00496 static struct tic6x_unwind_cache * 00497 tic6x_make_stub_cache (struct frame_info *this_frame) 00498 { 00499 struct tic6x_unwind_cache *cache; 00500 00501 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache); 00502 00503 cache->return_regnum = TIC6X_RA_REGNUM; 00504 00505 tic6x_setup_default (cache); 00506 00507 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM); 00508 00509 return cache; 00510 } 00511 00512 static void 00513 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache, 00514 struct frame_id *this_id) 00515 { 00516 struct tic6x_unwind_cache *cache; 00517 00518 if (*this_cache == NULL) 00519 *this_cache = tic6x_make_stub_cache (this_frame); 00520 cache = *this_cache; 00521 00522 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame)); 00523 } 00524 00525 static int 00526 tic6x_stub_unwind_sniffer (const struct frame_unwind *self, 00527 struct frame_info *this_frame, 00528 void **this_prologue_cache) 00529 { 00530 CORE_ADDR addr_in_block; 00531 00532 addr_in_block = get_frame_address_in_block (this_frame); 00533 if (in_plt_section (addr_in_block)) 00534 return 1; 00535 00536 return 0; 00537 } 00538 00539 static const struct frame_unwind tic6x_stub_unwind = 00540 { 00541 NORMAL_FRAME, 00542 default_frame_unwind_stop_reason, 00543 tic6x_stub_this_id, 00544 tic6x_frame_prev_register, 00545 NULL, 00546 tic6x_stub_unwind_sniffer 00547 }; 00548 00549 /* Return the instruction on address PC. */ 00550 00551 static unsigned long 00552 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc) 00553 { 00554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00555 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order); 00556 } 00557 00558 /* Compute the condition of INST if it is a conditional instruction. Always 00559 return 1 if INST is not a conditional instruction. */ 00560 00561 static int 00562 tic6x_condition_true (struct frame_info *frame, unsigned long inst) 00563 { 00564 int register_number; 00565 int register_value; 00566 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 }; 00567 00568 register_number = register_numbers[(inst >> 29) & 7]; 00569 if (register_number == -1) 00570 return 1; 00571 00572 register_value = get_frame_register_signed (frame, register_number); 00573 if ((inst & 0x10000000) != 0) 00574 return register_value == 0; 00575 return register_value != 0; 00576 } 00577 00578 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in 00579 instruction. */ 00580 00581 static int 00582 tic6x_register_number (int reg, int side, int crosspath) 00583 { 00584 int r = (reg & 15) | ((crosspath ^ side) << 4); 00585 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */ 00586 r += 37; 00587 return r; 00588 } 00589 00590 static int 00591 tic6x_extract_signed_field (int value, int low_bit, int bits) 00592 { 00593 int mask = (1 << bits) - 1; 00594 int r = (value >> low_bit) & mask; 00595 if ((r & (1 << (bits - 1))) != 0) 00596 r -= mask + 1; 00597 return r; 00598 } 00599 00600 /* Determine where to set a single step breakpoint. */ 00601 00602 static CORE_ADDR 00603 tic6x_get_next_pc (struct frame_info *frame, CORE_ADDR pc) 00604 { 00605 struct gdbarch *gdbarch = get_frame_arch (frame); 00606 unsigned long inst; 00607 int register_number; 00608 int last = 0; 00609 00610 do 00611 { 00612 inst = tic6x_fetch_instruction (gdbarch, pc); 00613 00614 last = !(inst & 1); 00615 00616 if (inst == TIC6X_INST_SWE) 00617 { 00618 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 00619 00620 if (tdep->syscall_next_pc != NULL) 00621 return tdep->syscall_next_pc (frame); 00622 } 00623 00624 if (tic6x_condition_true (frame, inst)) 00625 { 00626 if ((inst & 0x0000007c) == 0x00000010) 00627 { 00628 /* B with displacement */ 00629 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 00630 pc += tic6x_extract_signed_field (inst, 7, 21) << 2; 00631 break; 00632 } 00633 if ((inst & 0x0f83effc) == 0x00000360) 00634 { 00635 /* B with register */ 00636 00637 register_number = tic6x_register_number ((inst >> 18) & 0x1f, 00638 INST_S_BIT (inst), 00639 INST_X_BIT (inst)); 00640 pc = get_frame_register_unsigned (frame, register_number); 00641 break; 00642 } 00643 if ((inst & 0x00001ffc) == 0x00001020) 00644 { 00645 /* BDEC */ 00646 register_number = tic6x_register_number ((inst >> 23) & 0x1f, 00647 INST_S_BIT (inst), 0); 00648 if (get_frame_register_signed (frame, register_number) >= 0) 00649 { 00650 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 00651 pc += tic6x_extract_signed_field (inst, 7, 10) << 2; 00652 } 00653 break; 00654 } 00655 if ((inst & 0x00001ffc) == 0x00000120) 00656 { 00657 /* BNOP with displacement */ 00658 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 00659 pc += tic6x_extract_signed_field (inst, 16, 12) << 2; 00660 break; 00661 } 00662 if ((inst & 0x0f830ffe) == 0x00800362) 00663 { 00664 /* BNOP with register */ 00665 register_number = tic6x_register_number ((inst >> 18) & 0x1f, 00666 1, INST_X_BIT (inst)); 00667 pc = get_frame_register_unsigned (frame, register_number); 00668 break; 00669 } 00670 if ((inst & 0x00001ffc) == 0x00000020) 00671 { 00672 /* BPOS */ 00673 register_number = tic6x_register_number ((inst >> 23) & 0x1f, 00674 INST_S_BIT (inst), 0); 00675 if (get_frame_register_signed (frame, register_number) >= 0) 00676 { 00677 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 00678 pc += tic6x_extract_signed_field (inst, 13, 10) << 2; 00679 } 00680 break; 00681 } 00682 if ((inst & 0xf000007c) == 0x10000010) 00683 { 00684 /* CALLP */ 00685 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 00686 pc += tic6x_extract_signed_field (inst, 7, 21) << 2; 00687 break; 00688 } 00689 } 00690 pc += TIC6X_OPCODE_SIZE; 00691 } 00692 while (!last); 00693 return pc; 00694 } 00695 00696 /* This is the implementation of gdbarch method software_single_step. */ 00697 00698 static int 00699 tic6x_software_single_step (struct frame_info *frame) 00700 { 00701 struct gdbarch *gdbarch = get_frame_arch (frame); 00702 struct address_space *aspace = get_frame_address_space (frame); 00703 CORE_ADDR next_pc = tic6x_get_next_pc (frame, get_frame_pc (frame)); 00704 00705 insert_single_step_breakpoint (gdbarch, aspace, next_pc); 00706 00707 return 1; 00708 } 00709 00710 /* This is the implementation of gdbarch method frame_align. */ 00711 00712 static CORE_ADDR 00713 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) 00714 { 00715 return align_down (addr, 8); 00716 } 00717 00718 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its 00719 value into VALBUF. */ 00720 00721 static void 00722 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache, 00723 enum bfd_endian byte_order, gdb_byte *valbuf) 00724 { 00725 int len = TYPE_LENGTH (valtype); 00726 00727 /* pointer types are returned in register A4, 00728 up to 32-bit types in A4 00729 up to 64-bit types in A5:A4 */ 00730 if (len <= 4) 00731 { 00732 /* In big-endian, 00733 - one-byte structure or union occupies the LSB of single even register. 00734 - for two-byte structure or union, the first byte occupies byte 1 of 00735 register and the second byte occupies byte 0. 00736 so, we read the contents in VAL from the LSBs of register. */ 00737 if (len < 3 && byte_order == BFD_ENDIAN_BIG) 00738 regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len, 00739 valbuf); 00740 else 00741 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf); 00742 } 00743 else if (len <= 8) 00744 { 00745 /* For a 5-8 byte structure or union in big-endian, the first byte 00746 occupies byte 3 (the MSB) of the upper (odd) register and the 00747 remaining bytes fill the decreasingly significant bytes. 5-7 00748 byte structures or unions have padding in the LSBs of the 00749 lower (even) register. */ 00750 if (byte_order == BFD_ENDIAN_BIG) 00751 { 00752 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf + 4); 00753 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf); 00754 } 00755 else 00756 { 00757 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf); 00758 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf + 4); 00759 } 00760 } 00761 } 00762 00763 /* Write into appropriate registers a function return value 00764 of type TYPE, given in virtual format. */ 00765 00766 static void 00767 tic6x_store_return_value (struct type *valtype, struct regcache *regcache, 00768 enum bfd_endian byte_order, const gdb_byte *valbuf) 00769 { 00770 int len = TYPE_LENGTH (valtype); 00771 00772 /* return values of up to 8 bytes are returned in A5:A4 */ 00773 00774 if (len <= 4) 00775 { 00776 if (len < 3 && byte_order == BFD_ENDIAN_BIG) 00777 regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len, 00778 valbuf); 00779 else 00780 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf); 00781 } 00782 else if (len <= 8) 00783 { 00784 if (byte_order == BFD_ENDIAN_BIG) 00785 { 00786 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf + 4); 00787 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf); 00788 } 00789 else 00790 { 00791 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf); 00792 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf + 4); 00793 } 00794 } 00795 } 00796 00797 /* This is the implementation of gdbarch method return_value. */ 00798 00799 static enum return_value_convention 00800 tic6x_return_value (struct gdbarch *gdbarch, struct value *function, 00801 struct type *type, struct regcache *regcache, 00802 gdb_byte *readbuf, const gdb_byte *writebuf) 00803 { 00804 /* In C++, when function returns an object, even its size is small 00805 enough, it stii has to be passed via reference, pointed by register 00806 A3. */ 00807 if (current_language->la_language == language_cplus) 00808 { 00809 if (type != NULL) 00810 { 00811 CHECK_TYPEDEF (type); 00812 if (language_pass_by_reference (type)) 00813 return RETURN_VALUE_STRUCT_CONVENTION; 00814 } 00815 } 00816 00817 if (TYPE_LENGTH (type) > 8) 00818 return RETURN_VALUE_STRUCT_CONVENTION; 00819 00820 if (readbuf) 00821 tic6x_extract_return_value (type, regcache, 00822 gdbarch_byte_order (gdbarch), readbuf); 00823 if (writebuf) 00824 tic6x_store_return_value (type, regcache, 00825 gdbarch_byte_order (gdbarch), writebuf); 00826 00827 return RETURN_VALUE_REGISTER_CONVENTION; 00828 } 00829 00830 /* This is the implementation of gdbarch method dummy_id. */ 00831 00832 static struct frame_id 00833 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 00834 { 00835 return frame_id_build 00836 (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM), 00837 get_frame_pc (this_frame)); 00838 } 00839 00840 /* Get the alignment requirement of TYPE. */ 00841 00842 static int 00843 tic6x_arg_type_alignment (struct type *type) 00844 { 00845 int len = TYPE_LENGTH (check_typedef (type)); 00846 enum type_code typecode = TYPE_CODE (check_typedef (type)); 00847 00848 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) 00849 { 00850 /* The stack alignment of a structure (and union) passed by value is the 00851 smallest power of two greater than or equal to its size. 00852 This cannot exceed 8 bytes, which is the largest allowable size for 00853 a structure passed by value. */ 00854 00855 if (len <= 2) 00856 return len; 00857 else if (len <= 4) 00858 return 4; 00859 else if (len <= 8) 00860 return 8; 00861 else 00862 gdb_assert_not_reached ("unexpected length of data"); 00863 } 00864 else 00865 { 00866 if (len <= 4) 00867 return 4; 00868 else if (len == 8) 00869 { 00870 if (typecode == TYPE_CODE_COMPLEX) 00871 return 4; 00872 else 00873 return 8; 00874 } 00875 else if (len == 16) 00876 { 00877 if (typecode == TYPE_CODE_COMPLEX) 00878 return 8; 00879 else 00880 return 16; 00881 } 00882 else 00883 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"), 00884 len); 00885 } 00886 } 00887 00888 /* This is the implementation of gdbarch method push_dummy_call. */ 00889 00890 static CORE_ADDR 00891 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 00892 struct regcache *regcache, CORE_ADDR bp_addr, 00893 int nargs, struct value **args, CORE_ADDR sp, 00894 int struct_return, CORE_ADDR struct_addr) 00895 { 00896 int argreg = 0; 00897 int argnum; 00898 int stack_offset = 4; 00899 int references_offset = 4; 00900 CORE_ADDR func_addr = find_function_addr (function, NULL); 00901 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00902 struct type *func_type = value_type (function); 00903 /* The first arg passed on stack. Mostly the first 10 args are passed by 00904 registers. */ 00905 int first_arg_on_stack = 10; 00906 00907 /* Set the return address register to point to the entry point of 00908 the program, where a breakpoint lies in wait. */ 00909 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr); 00910 00911 /* The caller must pass an argument in A3 containing a destination address 00912 for the returned value. The callee returns the object by copying it to 00913 the address in A3. */ 00914 if (struct_return) 00915 regcache_cooked_write_unsigned (regcache, 3, struct_addr); 00916 00917 /* Determine the type of this function. */ 00918 func_type = check_typedef (func_type); 00919 if (TYPE_CODE (func_type) == TYPE_CODE_PTR) 00920 func_type = check_typedef (TYPE_TARGET_TYPE (func_type)); 00921 00922 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC 00923 || TYPE_CODE (func_type) == TYPE_CODE_METHOD); 00924 00925 /* For a variadic C function, the last explicitly declared argument and all 00926 remaining arguments are passed on the stack. */ 00927 if (TYPE_VARARGS (func_type)) 00928 first_arg_on_stack = TYPE_NFIELDS (func_type) - 1; 00929 00930 /* Now make space on the stack for the args. */ 00931 for (argnum = 0; argnum < nargs; argnum++) 00932 { 00933 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4); 00934 if (argnum >= 10 - argreg) 00935 references_offset += len; 00936 stack_offset += len; 00937 } 00938 sp -= stack_offset; 00939 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1 00940 Stack Alignment. */ 00941 sp = align_down (sp, 8); 00942 stack_offset = 4; 00943 00944 /* Now load as many as possible of the first arguments into 00945 registers, and push the rest onto the stack. Loop through args 00946 from first to last. */ 00947 for (argnum = 0; argnum < nargs; argnum++) 00948 { 00949 const gdb_byte *val; 00950 struct value *arg = args[argnum]; 00951 struct type *arg_type = check_typedef (value_type (arg)); 00952 int len = TYPE_LENGTH (arg_type); 00953 enum type_code typecode = TYPE_CODE (arg_type); 00954 00955 val = value_contents (arg); 00956 00957 /* Copy the argument to general registers or the stack in 00958 register-sized pieces. */ 00959 if (argreg < first_arg_on_stack) 00960 { 00961 if (len <= 4) 00962 { 00963 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) 00964 { 00965 /* In big-endian, 00966 - one-byte structure or union occupies the LSB of single 00967 even register. 00968 - for two-byte structure or union, the first byte 00969 occupies byte 1 of register and the second byte occupies 00970 byte 0. 00971 so, we write the contents in VAL to the lsp of 00972 register. */ 00973 if (len < 3 && byte_order == BFD_ENDIAN_BIG) 00974 regcache_cooked_write_part (regcache, arg_regs[argreg], 00975 4 - len, len, val); 00976 else 00977 regcache_cooked_write (regcache, arg_regs[argreg], val); 00978 } 00979 else 00980 { 00981 /* The argument is being passed by value in a single 00982 register. */ 00983 CORE_ADDR regval = extract_unsigned_integer (val, len, 00984 byte_order); 00985 00986 regcache_cooked_write_unsigned (regcache, arg_regs[argreg], 00987 regval); 00988 } 00989 } 00990 else 00991 { 00992 if (len <= 8) 00993 { 00994 if (typecode == TYPE_CODE_STRUCT 00995 || typecode == TYPE_CODE_UNION) 00996 { 00997 /* For a 5-8 byte structure or union in big-endian, the 00998 first byte occupies byte 3 (the MSB) of the upper (odd) 00999 register and the remaining bytes fill the decreasingly 01000 significant bytes. 5-7 byte structures or unions have 01001 padding in the LSBs of the lower (even) register. */ 01002 if (byte_order == BFD_ENDIAN_BIG) 01003 { 01004 regcache_cooked_write (regcache, 01005 arg_regs[argreg] + 1, val); 01006 regcache_cooked_write_part (regcache, 01007 arg_regs[argreg], 0, 01008 len - 4, val + 4); 01009 } 01010 else 01011 { 01012 regcache_cooked_write (regcache, arg_regs[argreg], 01013 val); 01014 regcache_cooked_write_part (regcache, 01015 arg_regs[argreg] + 1, 0, 01016 len - 4, val + 4); 01017 } 01018 } 01019 else 01020 { 01021 /* The argument is being passed by value in a pair of 01022 registers. */ 01023 ULONGEST regval = extract_unsigned_integer (val, len, 01024 byte_order); 01025 01026 regcache_cooked_write_unsigned (regcache, 01027 arg_regs[argreg], 01028 regval); 01029 regcache_cooked_write_unsigned (regcache, 01030 arg_regs[argreg] + 1, 01031 regval >> 32); 01032 } 01033 } 01034 else 01035 { 01036 /* The argument is being passed by reference in a single 01037 register. */ 01038 CORE_ADDR addr; 01039 01040 /* It is not necessary to adjust REFERENCES_OFFSET to 01041 8-byte aligned in some cases, in which 4-byte alignment 01042 is sufficient. For simplicity, we adjust 01043 REFERENCES_OFFSET to 8-byte aligned. */ 01044 references_offset = align_up (references_offset, 8); 01045 01046 addr = sp + references_offset; 01047 write_memory (addr, val, len); 01048 references_offset += align_up (len, 4); 01049 regcache_cooked_write_unsigned (regcache, arg_regs[argreg], 01050 addr); 01051 } 01052 } 01053 argreg++; 01054 } 01055 else 01056 { 01057 /* The argument is being passed on the stack. */ 01058 CORE_ADDR addr; 01059 01060 /* There are six different cases of alignment, and these rules can 01061 be found in tic6x_arg_type_alignment: 01062 01063 1) 4-byte aligned if size is less than or equal to 4 byte, such 01064 as short, int, struct, union etc. 01065 2) 8-byte aligned if size is less than or equal to 8-byte, such 01066 as double, long long, 01067 3) 4-byte aligned if it is of type _Complex float, even its size 01068 is 8-byte. 01069 4) 8-byte aligned if it is of type _Complex double or _Complex 01070 long double, even its size is 16-byte. Because, the address of 01071 variable is passed as reference. 01072 5) struct and union larger than 8-byte are passed by reference, so 01073 it is 4-byte aligned. 01074 6) struct and union of size between 4 byte and 8 byte varies. 01075 alignment of struct variable is the alignment of its first field, 01076 while alignment of union variable is the max of all its fields' 01077 alignment. */ 01078 01079 if (len <= 4) 01080 ; /* Default is 4-byte aligned. Nothing to be done. */ 01081 else if (len <= 8) 01082 stack_offset = align_up (stack_offset, 01083 tic6x_arg_type_alignment (arg_type)); 01084 else if (len == 16) 01085 { 01086 /* _Complex double or _Complex long double */ 01087 if (typecode == TYPE_CODE_COMPLEX) 01088 { 01089 /* The argument is being passed by reference on stack. */ 01090 CORE_ADDR addr; 01091 references_offset = align_up (references_offset, 8); 01092 01093 addr = sp + references_offset; 01094 /* Store variable on stack. */ 01095 write_memory (addr, val, len); 01096 01097 references_offset += align_up (len, 4); 01098 01099 /* Pass the address of variable on stack as reference. */ 01100 store_unsigned_integer ((gdb_byte *) val, 4, byte_order, 01101 addr); 01102 len = 4; 01103 01104 } 01105 else 01106 internal_error (__FILE__, __LINE__, 01107 _("unexpected type %d of arg %d"), 01108 typecode, argnum); 01109 } 01110 else 01111 internal_error (__FILE__, __LINE__, 01112 _("unexpected length %d of arg %d"), len, argnum); 01113 01114 addr = sp + stack_offset; 01115 write_memory (addr, val, len); 01116 stack_offset += align_up (len, 4); 01117 } 01118 } 01119 01120 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp); 01121 01122 /* Return adjusted stack pointer. */ 01123 return sp; 01124 } 01125 01126 /* This is the implementation of gdbarch method in_function_epilogue_p. */ 01127 01128 static int 01129 tic6x_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) 01130 { 01131 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc); 01132 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */ 01133 if ((inst & 0x0f83effc) == 0x360) 01134 { 01135 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f, 01136 INST_S_BIT (inst), 01137 INST_X_BIT (inst)); 01138 if (src2 == TIC6X_RA_REGNUM) 01139 return 1; 01140 } 01141 01142 return 0; 01143 } 01144 01145 /* This is the implementation of gdbarch method get_longjmp_target. */ 01146 01147 static int 01148 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) 01149 { 01150 struct gdbarch *gdbarch = get_frame_arch (frame); 01151 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 01152 CORE_ADDR jb_addr; 01153 gdb_byte buf[4]; 01154 01155 /* JMP_BUF is passed by reference in A4. */ 01156 jb_addr = get_frame_register_unsigned (frame, 4); 01157 01158 /* JMP_BUF contains 13 elements of type int, and return address is stored 01159 in the last slot. */ 01160 if (target_read_memory (jb_addr + 12 * 4, buf, 4)) 01161 return 0; 01162 01163 *pc = extract_unsigned_integer (buf, 4, byte_order); 01164 01165 return 1; 01166 } 01167 01168 /* This is the implementation of gdbarch method 01169 return_in_first_hidden_param_p. */ 01170 01171 static int 01172 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch, 01173 struct type *type) 01174 { 01175 return 0; 01176 } 01177 01178 static struct gdbarch * 01179 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 01180 { 01181 struct gdbarch *gdbarch; 01182 struct gdbarch_tdep *tdep; 01183 struct tdesc_arch_data *tdesc_data = NULL; 01184 const struct target_desc *tdesc = info.target_desc; 01185 int has_gp = 0; 01186 01187 /* Check any target description for validity. */ 01188 if (tdesc_has_registers (tdesc)) 01189 { 01190 const struct tdesc_feature *feature; 01191 int valid_p, i; 01192 01193 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core"); 01194 01195 if (feature == NULL) 01196 return NULL; 01197 01198 tdesc_data = tdesc_data_alloc (); 01199 01200 valid_p = 1; 01201 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */ 01202 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, 01203 tic6x_register_names[i]); 01204 01205 /* CSR */ 01206 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, 01207 tic6x_register_names[TIC6X_CSR_REGNUM]); 01208 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, 01209 tic6x_register_names[TIC6X_PC_REGNUM]); 01210 01211 if (!valid_p) 01212 { 01213 tdesc_data_cleanup (tdesc_data); 01214 return NULL; 01215 } 01216 01217 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp"); 01218 if (feature) 01219 { 01220 int j = 0; 01221 static const char *const gp[] = 01222 { 01223 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23", 01224 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31", 01225 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23", 01226 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31", 01227 }; 01228 01229 has_gp = 1; 01230 valid_p = 1; 01231 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */ 01232 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, 01233 gp[j]); 01234 01235 if (!valid_p) 01236 { 01237 tdesc_data_cleanup (tdesc_data); 01238 return NULL; 01239 } 01240 } 01241 01242 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp"); 01243 if (feature) 01244 { 01245 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR"); 01246 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC"); 01247 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC"); 01248 01249 if (!valid_p) 01250 { 01251 tdesc_data_cleanup (tdesc_data); 01252 return NULL; 01253 } 01254 } 01255 01256 } 01257 01258 /* Find a candidate among extant architectures. */ 01259 for (arches = gdbarch_list_lookup_by_info (arches, &info); 01260 arches != NULL; 01261 arches = gdbarch_list_lookup_by_info (arches->next, &info)) 01262 { 01263 tdep = gdbarch_tdep (arches->gdbarch); 01264 01265 if (has_gp != tdep->has_gp) 01266 continue; 01267 01268 if (tdep && tdep->breakpoint) 01269 return arches->gdbarch; 01270 } 01271 01272 tdep = xcalloc (1, sizeof (struct gdbarch_tdep)); 01273 01274 tdep->has_gp = has_gp; 01275 gdbarch = gdbarch_alloc (&info, tdep); 01276 01277 /* Data type sizes. */ 01278 set_gdbarch_ptr_bit (gdbarch, 32); 01279 set_gdbarch_addr_bit (gdbarch, 32); 01280 set_gdbarch_short_bit (gdbarch, 16); 01281 set_gdbarch_int_bit (gdbarch, 32); 01282 set_gdbarch_long_bit (gdbarch, 32); 01283 set_gdbarch_long_long_bit (gdbarch, 64); 01284 set_gdbarch_float_bit (gdbarch, 32); 01285 set_gdbarch_double_bit (gdbarch, 64); 01286 01287 set_gdbarch_float_format (gdbarch, floatformats_ieee_single); 01288 set_gdbarch_double_format (gdbarch, floatformats_ieee_double); 01289 01290 /* The register set. */ 01291 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS); 01292 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM); 01293 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM); 01294 01295 set_gdbarch_register_name (gdbarch, tic6x_register_name); 01296 set_gdbarch_register_type (gdbarch, tic6x_register_type); 01297 01298 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 01299 01300 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue); 01301 set_gdbarch_breakpoint_from_pc (gdbarch, tic6x_breakpoint_from_pc); 01302 01303 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc); 01304 set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp); 01305 01306 /* Unwinding. */ 01307 dwarf2_append_unwinders (gdbarch); 01308 01309 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind); 01310 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind); 01311 01312 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg); 01313 01314 /* Single stepping. */ 01315 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step); 01316 01317 set_gdbarch_print_insn (gdbarch, tic6x_print_insn); 01318 01319 /* Call dummy code. */ 01320 set_gdbarch_frame_align (gdbarch, tic6x_frame_align); 01321 01322 set_gdbarch_return_value (gdbarch, tic6x_return_value); 01323 01324 set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id); 01325 01326 /* Enable inferior call support. */ 01327 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call); 01328 01329 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target); 01330 01331 set_gdbarch_in_function_epilogue_p (gdbarch, tic6x_in_function_epilogue_p); 01332 01333 set_gdbarch_return_in_first_hidden_param_p (gdbarch, 01334 tic6x_return_in_first_hidden_param_p); 01335 01336 /* Hook in ABI-specific overrides, if they have been registered. */ 01337 gdbarch_init_osabi (info, gdbarch); 01338 01339 if (tdesc_data) 01340 tdesc_use_registers (gdbarch, tdesc, tdesc_data); 01341 01342 return gdbarch; 01343 } 01344 01345 /* -Wmissing-prototypes */ 01346 extern initialize_file_ftype _initialize_tic6x_tdep; 01347 01348 void 01349 _initialize_tic6x_tdep (void) 01350 { 01351 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init); 01352 01353 initialize_tdesc_tic6x_c64xp (); 01354 initialize_tdesc_tic6x_c64x (); 01355 initialize_tdesc_tic6x_c62x (); 01356 }