GDB (API)
/home/stan/gdb/src/gdb/spu-tdep.c
Go to the documentation of this file.
00001 /* SPU target-dependent code for GDB, the GNU debugger.
00002    Copyright (C) 2006-2013 Free Software Foundation, Inc.
00003 
00004    Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
00005    Based on a port by Sid Manning <sid@us.ibm.com>.
00006 
00007    This file is part of GDB.
00008 
00009    This program is free software; you can redistribute it and/or modify
00010    it under the terms of the GNU General Public License as published by
00011    the Free Software Foundation; either version 3 of the License, or
00012    (at your option) any later version.
00013 
00014    This program is distributed in the hope that it will be useful,
00015    but WITHOUT ANY WARRANTY; without even the implied warranty of
00016    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00017    GNU General Public License for more details.
00018 
00019    You should have received a copy of the GNU General Public License
00020    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
00021 
00022 #include "defs.h"
00023 #include "arch-utils.h"
00024 #include "gdbtypes.h"
00025 #include "gdbcmd.h"
00026 #include "gdbcore.h"
00027 #include "gdb_string.h"
00028 #include "gdb_assert.h"
00029 #include "frame.h"
00030 #include "frame-unwind.h"
00031 #include "frame-base.h"
00032 #include "trad-frame.h"
00033 #include "symtab.h"
00034 #include "symfile.h"
00035 #include "value.h"
00036 #include "inferior.h"
00037 #include "dis-asm.h"
00038 #include "objfiles.h"
00039 #include "language.h"
00040 #include "regcache.h"
00041 #include "reggroups.h"
00042 #include "floatformat.h"
00043 #include "block.h"
00044 #include "observer.h"
00045 #include "infcall.h"
00046 #include "dwarf2.h"
00047 #include "exceptions.h"
00048 #include "spu-tdep.h"
00049 
00050 
00051 /* The list of available "set spu " and "show spu " commands.  */
00052 static struct cmd_list_element *setspucmdlist = NULL;
00053 static struct cmd_list_element *showspucmdlist = NULL;
00054 
00055 /* Whether to stop for new SPE contexts.  */
00056 static int spu_stop_on_load_p = 0;
00057 /* Whether to automatically flush the SW-managed cache.  */
00058 static int spu_auto_flush_cache_p = 1;
00059 
00060 
00061 /* The tdep structure.  */
00062 struct gdbarch_tdep
00063 {
00064   /* The spufs ID identifying our address space.  */
00065   int id;
00066 
00067   /* SPU-specific vector type.  */
00068   struct type *spu_builtin_type_vec128;
00069 };
00070 
00071 
00072 /* SPU-specific vector type.  */
00073 static struct type *
00074 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
00075 {
00076   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
00077 
00078   if (!tdep->spu_builtin_type_vec128)
00079     {
00080       const struct builtin_type *bt = builtin_type (gdbarch);
00081       struct type *t;
00082 
00083       t = arch_composite_type (gdbarch,
00084                                "__spu_builtin_type_vec128", TYPE_CODE_UNION);
00085       append_composite_type_field (t, "uint128", bt->builtin_int128);
00086       append_composite_type_field (t, "v2_int64",
00087                                    init_vector_type (bt->builtin_int64, 2));
00088       append_composite_type_field (t, "v4_int32",
00089                                    init_vector_type (bt->builtin_int32, 4));
00090       append_composite_type_field (t, "v8_int16",
00091                                    init_vector_type (bt->builtin_int16, 8));
00092       append_composite_type_field (t, "v16_int8",
00093                                    init_vector_type (bt->builtin_int8, 16));
00094       append_composite_type_field (t, "v2_double",
00095                                    init_vector_type (bt->builtin_double, 2));
00096       append_composite_type_field (t, "v4_float",
00097                                    init_vector_type (bt->builtin_float, 4));
00098 
00099       TYPE_VECTOR (t) = 1;
00100       TYPE_NAME (t) = "spu_builtin_type_vec128";
00101 
00102       tdep->spu_builtin_type_vec128 = t;
00103     }
00104 
00105   return tdep->spu_builtin_type_vec128;
00106 }
00107 
00108 
00109 /* The list of available "info spu " commands.  */
00110 static struct cmd_list_element *infospucmdlist = NULL;
00111 
00112 /* Registers.  */
00113 
00114 static const char *
00115 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
00116 {
00117   static char *register_names[] = 
00118     {
00119       "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
00120       "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
00121       "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
00122       "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
00123       "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
00124       "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
00125       "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
00126       "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
00127       "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
00128       "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
00129       "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
00130       "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
00131       "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
00132       "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
00133       "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
00134       "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
00135       "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
00136     };
00137 
00138   if (reg_nr < 0)
00139     return NULL;
00140   if (reg_nr >= sizeof register_names / sizeof *register_names)
00141     return NULL;
00142 
00143   return register_names[reg_nr];
00144 }
00145 
00146 static struct type *
00147 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
00148 {
00149   if (reg_nr < SPU_NUM_GPRS)
00150     return spu_builtin_type_vec128 (gdbarch);
00151 
00152   switch (reg_nr)
00153     {
00154     case SPU_ID_REGNUM:
00155       return builtin_type (gdbarch)->builtin_uint32;
00156 
00157     case SPU_PC_REGNUM:
00158       return builtin_type (gdbarch)->builtin_func_ptr;
00159 
00160     case SPU_SP_REGNUM:
00161       return builtin_type (gdbarch)->builtin_data_ptr;
00162 
00163     case SPU_FPSCR_REGNUM:
00164       return builtin_type (gdbarch)->builtin_uint128;
00165 
00166     case SPU_SRR0_REGNUM:
00167       return builtin_type (gdbarch)->builtin_uint32;
00168 
00169     case SPU_LSLR_REGNUM:
00170       return builtin_type (gdbarch)->builtin_uint32;
00171 
00172     case SPU_DECR_REGNUM:
00173       return builtin_type (gdbarch)->builtin_uint32;
00174 
00175     case SPU_DECR_STATUS_REGNUM:
00176       return builtin_type (gdbarch)->builtin_uint32;
00177 
00178     default:
00179       internal_error (__FILE__, __LINE__, _("invalid regnum"));
00180     }
00181 }
00182 
00183 /* Pseudo registers for preferred slots - stack pointer.  */
00184 
00185 static enum register_status
00186 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
00187                               gdb_byte *buf)
00188 {
00189   struct gdbarch *gdbarch = get_regcache_arch (regcache);
00190   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00191   enum register_status status;
00192   gdb_byte reg[32];
00193   char annex[32];
00194   ULONGEST id;
00195   ULONGEST ul;
00196 
00197   status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
00198   if (status != REG_VALID)
00199     return status;
00200   xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
00201   memset (reg, 0, sizeof reg);
00202   target_read (&current_target, TARGET_OBJECT_SPU, annex,
00203                reg, 0, sizeof reg);
00204 
00205   ul = strtoulst ((char *) reg, NULL, 16);
00206   store_unsigned_integer (buf, 4, byte_order, ul);
00207   return REG_VALID;
00208 }
00209 
00210 static enum register_status
00211 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
00212                           int regnum, gdb_byte *buf)
00213 {
00214   gdb_byte reg[16];
00215   char annex[32];
00216   ULONGEST id;
00217   enum register_status status;
00218 
00219   switch (regnum)
00220     {
00221     case SPU_SP_REGNUM:
00222       status = regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
00223       if (status != REG_VALID)
00224         return status;
00225       memcpy (buf, reg, 4);
00226       return status;
00227 
00228     case SPU_FPSCR_REGNUM:
00229       status = regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
00230       if (status != REG_VALID)
00231         return status;
00232       xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
00233       target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
00234       return status;
00235 
00236     case SPU_SRR0_REGNUM:
00237       return spu_pseudo_register_read_spu (regcache, "srr0", buf);
00238 
00239     case SPU_LSLR_REGNUM:
00240       return spu_pseudo_register_read_spu (regcache, "lslr", buf);
00241 
00242     case SPU_DECR_REGNUM:
00243       return spu_pseudo_register_read_spu (regcache, "decr", buf);
00244 
00245     case SPU_DECR_STATUS_REGNUM:
00246       return spu_pseudo_register_read_spu (regcache, "decr_status", buf);
00247 
00248     default:
00249       internal_error (__FILE__, __LINE__, _("invalid regnum"));
00250     }
00251 }
00252 
00253 static void
00254 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
00255                                const gdb_byte *buf)
00256 {
00257   struct gdbarch *gdbarch = get_regcache_arch (regcache);
00258   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00259   char reg[32];
00260   char annex[32];
00261   ULONGEST id;
00262 
00263   regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
00264   xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
00265   xsnprintf (reg, sizeof reg, "0x%s",
00266              phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
00267   target_write (&current_target, TARGET_OBJECT_SPU, annex,
00268                 (gdb_byte *) reg, 0, strlen (reg));
00269 }
00270 
00271 static void
00272 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
00273                            int regnum, const gdb_byte *buf)
00274 {
00275   gdb_byte reg[16];
00276   char annex[32];
00277   ULONGEST id;
00278 
00279   switch (regnum)
00280     {
00281     case SPU_SP_REGNUM:
00282       regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
00283       memcpy (reg, buf, 4);
00284       regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
00285       break;
00286 
00287     case SPU_FPSCR_REGNUM:
00288       regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
00289       xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
00290       target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
00291       break;
00292 
00293     case SPU_SRR0_REGNUM:
00294       spu_pseudo_register_write_spu (regcache, "srr0", buf);
00295       break;
00296 
00297     case SPU_LSLR_REGNUM:
00298       spu_pseudo_register_write_spu (regcache, "lslr", buf);
00299       break;
00300 
00301     case SPU_DECR_REGNUM:
00302       spu_pseudo_register_write_spu (regcache, "decr", buf);
00303       break;
00304 
00305     case SPU_DECR_STATUS_REGNUM:
00306       spu_pseudo_register_write_spu (regcache, "decr_status", buf);
00307       break;
00308 
00309     default:
00310       internal_error (__FILE__, __LINE__, _("invalid regnum"));
00311     }
00312 }
00313 
00314 /* Value conversion -- access scalar values at the preferred slot.  */
00315 
00316 static struct value *
00317 spu_value_from_register (struct type *type, int regnum,
00318                          struct frame_info *frame)
00319 {
00320   struct value *value = default_value_from_register (type, regnum, frame);
00321   int len = TYPE_LENGTH (type);
00322 
00323   if (regnum < SPU_NUM_GPRS && len < 16)
00324     {
00325       int preferred_slot = len < 4 ? 4 - len : 0;
00326       set_value_offset (value, preferred_slot);
00327     }
00328 
00329   return value;
00330 }
00331 
00332 /* Register groups.  */
00333 
00334 static int
00335 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
00336                          struct reggroup *group)
00337 {
00338   /* Registers displayed via 'info regs'.  */
00339   if (group == general_reggroup)
00340     return 1;
00341 
00342   /* Registers displayed via 'info float'.  */
00343   if (group == float_reggroup)
00344     return 0;
00345 
00346   /* Registers that need to be saved/restored in order to
00347      push or pop frames.  */
00348   if (group == save_reggroup || group == restore_reggroup)
00349     return 1;
00350 
00351   return default_register_reggroup_p (gdbarch, regnum, group);
00352 }
00353 
00354 
00355 /* Address handling.  */
00356 
00357 static int
00358 spu_gdbarch_id (struct gdbarch *gdbarch)
00359 {
00360   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
00361   int id = tdep->id;
00362 
00363   /* The objfile architecture of a standalone SPU executable does not
00364      provide an SPU ID.  Retrieve it from the objfile's relocated
00365      address range in this special case.  */
00366   if (id == -1
00367       && symfile_objfile && symfile_objfile->obfd
00368       && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
00369       && symfile_objfile->sections != symfile_objfile->sections_end)
00370     id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
00371 
00372   return id;
00373 }
00374 
00375 static int
00376 spu_address_class_type_flags (int byte_size, int dwarf2_addr_class)
00377 {
00378   if (dwarf2_addr_class == 1)
00379     return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
00380   else
00381     return 0;
00382 }
00383 
00384 static const char *
00385 spu_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
00386 {
00387   if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
00388     return "__ea";
00389   else
00390     return NULL;
00391 }
00392 
00393 static int
00394 spu_address_class_name_to_type_flags (struct gdbarch *gdbarch,
00395                                       const char *name, int *type_flags_ptr)
00396 {
00397   if (strcmp (name, "__ea") == 0)
00398     {
00399       *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
00400       return 1;
00401     }
00402   else
00403    return 0;
00404 }
00405 
00406 static void
00407 spu_address_to_pointer (struct gdbarch *gdbarch,
00408                         struct type *type, gdb_byte *buf, CORE_ADDR addr)
00409 {
00410   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00411   store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
00412                           SPUADDR_ADDR (addr));
00413 }
00414 
00415 static CORE_ADDR
00416 spu_pointer_to_address (struct gdbarch *gdbarch,
00417                         struct type *type, const gdb_byte *buf)
00418 {
00419   int id = spu_gdbarch_id (gdbarch);
00420   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00421   ULONGEST addr
00422     = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
00423 
00424   /* Do not convert __ea pointers.  */
00425   if (TYPE_ADDRESS_CLASS_1 (type))
00426     return addr;
00427 
00428   return addr? SPUADDR (id, addr) : 0;
00429 }
00430 
00431 static CORE_ADDR
00432 spu_integer_to_address (struct gdbarch *gdbarch,
00433                         struct type *type, const gdb_byte *buf)
00434 {
00435   int id = spu_gdbarch_id (gdbarch);
00436   ULONGEST addr = unpack_long (type, buf);
00437 
00438   return SPUADDR (id, addr);
00439 }
00440 
00441 
00442 /* Decoding SPU instructions.  */
00443 
00444 enum
00445   {
00446     op_lqd   = 0x34,
00447     op_lqx   = 0x3c4,
00448     op_lqa   = 0x61,
00449     op_lqr   = 0x67,
00450     op_stqd  = 0x24,
00451     op_stqx  = 0x144,
00452     op_stqa  = 0x41,
00453     op_stqr  = 0x47,
00454 
00455     op_il    = 0x081,
00456     op_ila   = 0x21,
00457     op_a     = 0x0c0,
00458     op_ai    = 0x1c,
00459 
00460     op_selb  = 0x8,
00461 
00462     op_br    = 0x64,
00463     op_bra   = 0x60,
00464     op_brsl  = 0x66,
00465     op_brasl = 0x62,
00466     op_brnz  = 0x42,
00467     op_brz   = 0x40,
00468     op_brhnz = 0x46,
00469     op_brhz  = 0x44,
00470     op_bi    = 0x1a8,
00471     op_bisl  = 0x1a9,
00472     op_biz   = 0x128,
00473     op_binz  = 0x129,
00474     op_bihz  = 0x12a,
00475     op_bihnz = 0x12b,
00476   };
00477 
00478 static int
00479 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
00480 {
00481   if ((insn >> 21) == op)
00482     {
00483       *rt = insn & 127;
00484       *ra = (insn >> 7) & 127;
00485       *rb = (insn >> 14) & 127;
00486       return 1;
00487     }
00488 
00489   return 0;
00490 }
00491 
00492 static int
00493 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
00494 {
00495   if ((insn >> 28) == op)
00496     {
00497       *rt = (insn >> 21) & 127;
00498       *ra = (insn >> 7) & 127;
00499       *rb = (insn >> 14) & 127;
00500       *rc = insn & 127;
00501       return 1;
00502     }
00503 
00504   return 0;
00505 }
00506 
00507 static int
00508 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
00509 {
00510   if ((insn >> 21) == op)
00511     {
00512       *rt = insn & 127;
00513       *ra = (insn >> 7) & 127;
00514       *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
00515       return 1;
00516     }
00517 
00518   return 0;
00519 }
00520 
00521 static int
00522 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
00523 {
00524   if ((insn >> 24) == op)
00525     {
00526       *rt = insn & 127;
00527       *ra = (insn >> 7) & 127;
00528       *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
00529       return 1;
00530     }
00531 
00532   return 0;
00533 }
00534 
00535 static int
00536 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
00537 {
00538   if ((insn >> 23) == op)
00539     {
00540       *rt = insn & 127;
00541       *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
00542       return 1;
00543     }
00544 
00545   return 0;
00546 }
00547 
00548 static int
00549 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
00550 {
00551   if ((insn >> 25) == op)
00552     {
00553       *rt = insn & 127;
00554       *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
00555       return 1;
00556     }
00557 
00558   return 0;
00559 }
00560 
00561 static int
00562 is_branch (unsigned int insn, int *offset, int *reg)
00563 {
00564   int rt, i7, i16;
00565 
00566   if (is_ri16 (insn, op_br, &rt, &i16)
00567       || is_ri16 (insn, op_brsl, &rt, &i16)
00568       || is_ri16 (insn, op_brnz, &rt, &i16)
00569       || is_ri16 (insn, op_brz, &rt, &i16)
00570       || is_ri16 (insn, op_brhnz, &rt, &i16)
00571       || is_ri16 (insn, op_brhz, &rt, &i16))
00572     {
00573       *reg = SPU_PC_REGNUM;
00574       *offset = i16 << 2;
00575       return 1;
00576     }
00577 
00578   if (is_ri16 (insn, op_bra, &rt, &i16)
00579       || is_ri16 (insn, op_brasl, &rt, &i16))
00580     {
00581       *reg = -1;
00582       *offset = i16 << 2;
00583       return 1;
00584     }
00585 
00586   if (is_ri7 (insn, op_bi, &rt, reg, &i7)
00587       || is_ri7 (insn, op_bisl, &rt, reg, &i7)
00588       || is_ri7 (insn, op_biz, &rt, reg, &i7)
00589       || is_ri7 (insn, op_binz, &rt, reg, &i7)
00590       || is_ri7 (insn, op_bihz, &rt, reg, &i7)
00591       || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
00592     {
00593       *offset = 0;
00594       return 1;
00595     }
00596 
00597   return 0;
00598 }
00599 
00600 
00601 /* Prolog parsing.  */
00602 
00603 struct spu_prologue_data
00604   {
00605     /* Stack frame size.  -1 if analysis was unsuccessful.  */
00606     int size;
00607 
00608     /* How to find the CFA.  The CFA is equal to SP at function entry.  */
00609     int cfa_reg;
00610     int cfa_offset;
00611 
00612     /* Offset relative to CFA where a register is saved.  -1 if invalid.  */
00613     int reg_offset[SPU_NUM_GPRS];
00614   };
00615 
00616 static CORE_ADDR
00617 spu_analyze_prologue (struct gdbarch *gdbarch,
00618                       CORE_ADDR start_pc, CORE_ADDR end_pc,
00619                       struct spu_prologue_data *data)
00620 {
00621   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00622   int found_sp = 0;
00623   int found_fp = 0;
00624   int found_lr = 0;
00625   int found_bc = 0;
00626   int reg_immed[SPU_NUM_GPRS];
00627   gdb_byte buf[16];
00628   CORE_ADDR prolog_pc = start_pc;
00629   CORE_ADDR pc;
00630   int i;
00631 
00632 
00633   /* Initialize DATA to default values.  */
00634   data->size = -1;
00635 
00636   data->cfa_reg = SPU_RAW_SP_REGNUM;
00637   data->cfa_offset = 0;
00638 
00639   for (i = 0; i < SPU_NUM_GPRS; i++)
00640     data->reg_offset[i] = -1;
00641 
00642   /* Set up REG_IMMED array.  This is non-zero for a register if we know its
00643      preferred slot currently holds this immediate value.  */
00644   for (i = 0; i < SPU_NUM_GPRS; i++)
00645       reg_immed[i] = 0;
00646 
00647   /* Scan instructions until the first branch.
00648 
00649      The following instructions are important prolog components:
00650 
00651         - The first instruction to set up the stack pointer.
00652         - The first instruction to set up the frame pointer.
00653         - The first instruction to save the link register.
00654         - The first instruction to save the backchain.
00655 
00656      We return the instruction after the latest of these four,
00657      or the incoming PC if none is found.  The first instruction
00658      to set up the stack pointer also defines the frame size.
00659 
00660      Note that instructions saving incoming arguments to their stack
00661      slots are not counted as important, because they are hard to
00662      identify with certainty.  This should not matter much, because
00663      arguments are relevant only in code compiled with debug data,
00664      and in such code the GDB core will advance until the first source
00665      line anyway, using SAL data.
00666 
00667      For purposes of stack unwinding, we analyze the following types
00668      of instructions in addition:
00669 
00670       - Any instruction adding to the current frame pointer.
00671       - Any instruction loading an immediate constant into a register.
00672       - Any instruction storing a register onto the stack.
00673 
00674      These are used to compute the CFA and REG_OFFSET output.  */
00675 
00676   for (pc = start_pc; pc < end_pc; pc += 4)
00677     {
00678       unsigned int insn;
00679       int rt, ra, rb, rc, immed;
00680 
00681       if (target_read_memory (pc, buf, 4))
00682         break;
00683       insn = extract_unsigned_integer (buf, 4, byte_order);
00684 
00685       /* AI is the typical instruction to set up a stack frame.
00686          It is also used to initialize the frame pointer.  */
00687       if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
00688         {
00689           if (rt == data->cfa_reg && ra == data->cfa_reg)
00690             data->cfa_offset -= immed;
00691 
00692           if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
00693               && !found_sp)
00694             {
00695               found_sp = 1;
00696               prolog_pc = pc + 4;
00697 
00698               data->size = -immed;
00699             }
00700           else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
00701                    && !found_fp)
00702             {
00703               found_fp = 1;
00704               prolog_pc = pc + 4;
00705 
00706               data->cfa_reg = SPU_FP_REGNUM;
00707               data->cfa_offset -= immed;
00708             }
00709         }
00710 
00711       /* A is used to set up stack frames of size >= 512 bytes.
00712          If we have tracked the contents of the addend register,
00713          we can handle this as well.  */
00714       else if (is_rr (insn, op_a, &rt, &ra, &rb))
00715         {
00716           if (rt == data->cfa_reg && ra == data->cfa_reg)
00717             {
00718               if (reg_immed[rb] != 0)
00719                 data->cfa_offset -= reg_immed[rb];
00720               else
00721                 data->cfa_reg = -1;  /* We don't know the CFA any more.  */
00722             }
00723 
00724           if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
00725               && !found_sp)
00726             {
00727               found_sp = 1;
00728               prolog_pc = pc + 4;
00729 
00730               if (reg_immed[rb] != 0)
00731                 data->size = -reg_immed[rb];
00732             }
00733         }
00734 
00735       /* We need to track IL and ILA used to load immediate constants
00736          in case they are later used as input to an A instruction.  */
00737       else if (is_ri16 (insn, op_il, &rt, &immed))
00738         {
00739           reg_immed[rt] = immed;
00740 
00741           if (rt == SPU_RAW_SP_REGNUM && !found_sp)
00742             found_sp = 1;
00743         }
00744 
00745       else if (is_ri18 (insn, op_ila, &rt, &immed))
00746         {
00747           reg_immed[rt] = immed & 0x3ffff;
00748 
00749           if (rt == SPU_RAW_SP_REGNUM && !found_sp)
00750             found_sp = 1;
00751         }
00752 
00753       /* STQD is used to save registers to the stack.  */
00754       else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
00755         {
00756           if (ra == data->cfa_reg)
00757             data->reg_offset[rt] = data->cfa_offset - (immed << 4);
00758 
00759           if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
00760               && !found_lr)
00761             {
00762               found_lr = 1;
00763               prolog_pc = pc + 4;
00764             }
00765 
00766           if (ra == SPU_RAW_SP_REGNUM
00767               && (found_sp? immed == 0 : rt == SPU_RAW_SP_REGNUM)
00768               && !found_bc)
00769             {
00770               found_bc = 1;
00771               prolog_pc = pc + 4;
00772             }
00773         }
00774 
00775       /* _start uses SELB to set up the stack pointer.  */
00776       else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
00777         {
00778           if (rt == SPU_RAW_SP_REGNUM && !found_sp)
00779             found_sp = 1;
00780         }
00781 
00782       /* We terminate if we find a branch.  */
00783       else if (is_branch (insn, &immed, &ra))
00784         break;
00785     }
00786 
00787 
00788   /* If we successfully parsed until here, and didn't find any instruction
00789      modifying SP, we assume we have a frameless function.  */
00790   if (!found_sp)
00791     data->size = 0;
00792 
00793   /* Return cooked instead of raw SP.  */
00794   if (data->cfa_reg == SPU_RAW_SP_REGNUM)
00795     data->cfa_reg = SPU_SP_REGNUM;
00796 
00797   return prolog_pc;
00798 }
00799 
00800 /* Return the first instruction after the prologue starting at PC.  */
00801 static CORE_ADDR
00802 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
00803 {
00804   struct spu_prologue_data data;
00805   return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
00806 }
00807 
00808 /* Return the frame pointer in use at address PC.  */
00809 static void
00810 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
00811                            int *reg, LONGEST *offset)
00812 {
00813   struct spu_prologue_data data;
00814   spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
00815 
00816   if (data.size != -1 && data.cfa_reg != -1)
00817     {
00818       /* The 'frame pointer' address is CFA minus frame size.  */
00819       *reg = data.cfa_reg;
00820       *offset = data.cfa_offset - data.size;
00821     }
00822   else
00823     {
00824       /* ??? We don't really know ...  */
00825       *reg = SPU_SP_REGNUM;
00826       *offset = 0;
00827     }
00828 }
00829 
00830 /* Return true if we are in the function's epilogue, i.e. after the
00831    instruction that destroyed the function's stack frame.
00832 
00833    1) scan forward from the point of execution:
00834        a) If you find an instruction that modifies the stack pointer
00835           or transfers control (except a return), execution is not in
00836           an epilogue, return.
00837        b) Stop scanning if you find a return instruction or reach the
00838           end of the function or reach the hard limit for the size of
00839           an epilogue.
00840    2) scan backward from the point of execution:
00841         a) If you find an instruction that modifies the stack pointer,
00842             execution *is* in an epilogue, return.
00843         b) Stop scanning if you reach an instruction that transfers
00844            control or the beginning of the function or reach the hard
00845            limit for the size of an epilogue.  */
00846 
00847 static int
00848 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
00849 {
00850   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00851   CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
00852   bfd_byte buf[4];
00853   unsigned int insn;
00854   int rt, ra, rb, immed;
00855 
00856   /* Find the search limits based on function boundaries and hard limit.
00857      We assume the epilogue can be up to 64 instructions long.  */
00858 
00859   const int spu_max_epilogue_size = 64 * 4;
00860 
00861   if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
00862     return 0;
00863 
00864   if (pc - func_start < spu_max_epilogue_size)
00865     epilogue_start = func_start;
00866   else
00867     epilogue_start = pc - spu_max_epilogue_size;
00868 
00869   if (func_end - pc < spu_max_epilogue_size)
00870     epilogue_end = func_end;
00871   else
00872     epilogue_end = pc + spu_max_epilogue_size;
00873 
00874   /* Scan forward until next 'bi $0'.  */
00875 
00876   for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
00877     {
00878       if (target_read_memory (scan_pc, buf, 4))
00879         return 0;
00880       insn = extract_unsigned_integer (buf, 4, byte_order);
00881 
00882       if (is_branch (insn, &immed, &ra))
00883         {
00884           if (immed == 0 && ra == SPU_LR_REGNUM)
00885             break;
00886 
00887           return 0;
00888         }
00889 
00890       if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
00891           || is_rr (insn, op_a, &rt, &ra, &rb)
00892           || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
00893         {
00894           if (rt == SPU_RAW_SP_REGNUM)
00895             return 0;
00896         }
00897     }
00898 
00899   if (scan_pc >= epilogue_end)
00900     return 0;
00901 
00902   /* Scan backward until adjustment to stack pointer (R1).  */
00903 
00904   for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
00905     {
00906       if (target_read_memory (scan_pc, buf, 4))
00907         return 0;
00908       insn = extract_unsigned_integer (buf, 4, byte_order);
00909 
00910       if (is_branch (insn, &immed, &ra))
00911         return 0;
00912 
00913       if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
00914           || is_rr (insn, op_a, &rt, &ra, &rb)
00915           || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
00916         {
00917           if (rt == SPU_RAW_SP_REGNUM)
00918             return 1;
00919         }
00920     }
00921 
00922   return 0;
00923 }
00924 
00925 
00926 /* Normal stack frames.  */
00927 
00928 struct spu_unwind_cache
00929 {
00930   CORE_ADDR func;
00931   CORE_ADDR frame_base;
00932   CORE_ADDR local_base;
00933 
00934   struct trad_frame_saved_reg *saved_regs;
00935 };
00936 
00937 static struct spu_unwind_cache *
00938 spu_frame_unwind_cache (struct frame_info *this_frame,
00939                         void **this_prologue_cache)
00940 {
00941   struct gdbarch *gdbarch = get_frame_arch (this_frame);
00942   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
00943   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00944   struct spu_unwind_cache *info;
00945   struct spu_prologue_data data;
00946   CORE_ADDR id = tdep->id;
00947   gdb_byte buf[16];
00948 
00949   if (*this_prologue_cache)
00950     return *this_prologue_cache;
00951 
00952   info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
00953   *this_prologue_cache = info;
00954   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
00955   info->frame_base = 0;
00956   info->local_base = 0;
00957 
00958   /* Find the start of the current function, and analyze its prologue.  */
00959   info->func = get_frame_func (this_frame);
00960   if (info->func == 0)
00961     {
00962       /* Fall back to using the current PC as frame ID.  */
00963       info->func = get_frame_pc (this_frame);
00964       data.size = -1;
00965     }
00966   else
00967     spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
00968                           &data);
00969 
00970   /* If successful, use prologue analysis data.  */
00971   if (data.size != -1 && data.cfa_reg != -1)
00972     {
00973       CORE_ADDR cfa;
00974       int i;
00975 
00976       /* Determine CFA via unwound CFA_REG plus CFA_OFFSET.  */
00977       get_frame_register (this_frame, data.cfa_reg, buf);
00978       cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
00979       cfa = SPUADDR (id, cfa);
00980 
00981       /* Call-saved register slots.  */
00982       for (i = 0; i < SPU_NUM_GPRS; i++)
00983         if (i == SPU_LR_REGNUM
00984             || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
00985           if (data.reg_offset[i] != -1)
00986             info->saved_regs[i].addr = cfa - data.reg_offset[i];
00987 
00988       /* Frame bases.  */
00989       info->frame_base = cfa;
00990       info->local_base = cfa - data.size;
00991     }
00992 
00993   /* Otherwise, fall back to reading the backchain link.  */
00994   else
00995     {
00996       CORE_ADDR reg;
00997       LONGEST backchain;
00998       ULONGEST lslr;
00999       int status;
01000 
01001       /* Get local store limit.  */
01002       lslr = get_frame_register_unsigned (this_frame, SPU_LSLR_REGNUM);
01003       if (!lslr)
01004         lslr = (ULONGEST) -1;
01005 
01006       /* Get the backchain.  */
01007       reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
01008       status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
01009                                          &backchain);
01010 
01011       /* A zero backchain terminates the frame chain.  Also, sanity
01012          check against the local store size limit.  */
01013       if (status && backchain > 0 && backchain <= lslr)
01014         {
01015           /* Assume the link register is saved into its slot.  */
01016           if (backchain + 16 <= lslr)
01017             info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id,
01018                                                             backchain + 16);
01019 
01020           /* Frame bases.  */
01021           info->frame_base = SPUADDR (id, backchain);
01022           info->local_base = SPUADDR (id, reg);
01023         }
01024     }
01025 
01026   /* If we didn't find a frame, we cannot determine SP / return address.  */
01027   if (info->frame_base == 0)
01028     return info;
01029 
01030   /* The previous SP is equal to the CFA.  */
01031   trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
01032                         SPUADDR_ADDR (info->frame_base));
01033 
01034   /* Read full contents of the unwound link register in order to
01035      be able to determine the return address.  */
01036   if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
01037     target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
01038   else
01039     get_frame_register (this_frame, SPU_LR_REGNUM, buf);
01040 
01041   /* Normally, the return address is contained in the slot 0 of the
01042      link register, and slots 1-3 are zero.  For an overlay return,
01043      slot 0 contains the address of the overlay manager return stub,
01044      slot 1 contains the partition number of the overlay section to
01045      be returned to, and slot 2 contains the return address within
01046      that section.  Return the latter address in that case.  */
01047   if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
01048     trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
01049                           extract_unsigned_integer (buf + 8, 4, byte_order));
01050   else
01051     trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
01052                           extract_unsigned_integer (buf, 4, byte_order));
01053  
01054   return info;
01055 }
01056 
01057 static void
01058 spu_frame_this_id (struct frame_info *this_frame,
01059                    void **this_prologue_cache, struct frame_id *this_id)
01060 {
01061   struct spu_unwind_cache *info =
01062     spu_frame_unwind_cache (this_frame, this_prologue_cache);
01063 
01064   if (info->frame_base == 0)
01065     return;
01066 
01067   *this_id = frame_id_build (info->frame_base, info->func);
01068 }
01069 
01070 static struct value *
01071 spu_frame_prev_register (struct frame_info *this_frame,
01072                          void **this_prologue_cache, int regnum)
01073 {
01074   struct spu_unwind_cache *info
01075     = spu_frame_unwind_cache (this_frame, this_prologue_cache);
01076 
01077   /* Special-case the stack pointer.  */
01078   if (regnum == SPU_RAW_SP_REGNUM)
01079     regnum = SPU_SP_REGNUM;
01080 
01081   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
01082 }
01083 
01084 static const struct frame_unwind spu_frame_unwind = {
01085   NORMAL_FRAME,
01086   default_frame_unwind_stop_reason,
01087   spu_frame_this_id,
01088   spu_frame_prev_register,
01089   NULL,
01090   default_frame_sniffer
01091 };
01092 
01093 static CORE_ADDR
01094 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
01095 {
01096   struct spu_unwind_cache *info
01097     = spu_frame_unwind_cache (this_frame, this_cache);
01098   return info->local_base;
01099 }
01100 
01101 static const struct frame_base spu_frame_base = {
01102   &spu_frame_unwind,
01103   spu_frame_base_address,
01104   spu_frame_base_address,
01105   spu_frame_base_address
01106 };
01107 
01108 static CORE_ADDR
01109 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
01110 {
01111   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01112   CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
01113   /* Mask off interrupt enable bit.  */
01114   return SPUADDR (tdep->id, pc & -4);
01115 }
01116 
01117 static CORE_ADDR
01118 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
01119 {
01120   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01121   CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
01122   return SPUADDR (tdep->id, sp);
01123 }
01124 
01125 static CORE_ADDR
01126 spu_read_pc (struct regcache *regcache)
01127 {
01128   struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
01129   ULONGEST pc;
01130   regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
01131   /* Mask off interrupt enable bit.  */
01132   return SPUADDR (tdep->id, pc & -4);
01133 }
01134 
01135 static void
01136 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
01137 {
01138   /* Keep interrupt enabled state unchanged.  */
01139   ULONGEST old_pc;
01140 
01141   regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
01142   regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
01143                                   (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
01144 }
01145 
01146 
01147 /* Cell/B.E. cross-architecture unwinder support.  */
01148 
01149 struct spu2ppu_cache
01150 {
01151   struct frame_id frame_id;
01152   struct regcache *regcache;
01153 };
01154 
01155 static struct gdbarch *
01156 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
01157 {
01158   struct spu2ppu_cache *cache = *this_cache;
01159   return get_regcache_arch (cache->regcache);
01160 }
01161 
01162 static void
01163 spu2ppu_this_id (struct frame_info *this_frame,
01164                  void **this_cache, struct frame_id *this_id)
01165 {
01166   struct spu2ppu_cache *cache = *this_cache;
01167   *this_id = cache->frame_id;
01168 }
01169 
01170 static struct value *
01171 spu2ppu_prev_register (struct frame_info *this_frame,
01172                        void **this_cache, int regnum)
01173 {
01174   struct spu2ppu_cache *cache = *this_cache;
01175   struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
01176   gdb_byte *buf;
01177 
01178   buf = alloca (register_size (gdbarch, regnum));
01179   regcache_cooked_read (cache->regcache, regnum, buf);
01180   return frame_unwind_got_bytes (this_frame, regnum, buf);
01181 }
01182 
01183 static int
01184 spu2ppu_sniffer (const struct frame_unwind *self,
01185                  struct frame_info *this_frame, void **this_prologue_cache)
01186 {
01187   struct gdbarch *gdbarch = get_frame_arch (this_frame);
01188   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01189   CORE_ADDR base, func, backchain;
01190   gdb_byte buf[4];
01191 
01192   if (gdbarch_bfd_arch_info (target_gdbarch ())->arch == bfd_arch_spu)
01193     return 0;
01194 
01195   base = get_frame_sp (this_frame);
01196   func = get_frame_pc (this_frame);
01197   if (target_read_memory (base, buf, 4))
01198     return 0;
01199   backchain = extract_unsigned_integer (buf, 4, byte_order);
01200 
01201   if (!backchain)
01202     {
01203       struct frame_info *fi;
01204 
01205       struct spu2ppu_cache *cache
01206         = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
01207 
01208       cache->frame_id = frame_id_build (base + 16, func);
01209 
01210       for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
01211         if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
01212           break;
01213 
01214       if (fi)
01215         {
01216           cache->regcache = frame_save_as_regcache (fi);
01217           *this_prologue_cache = cache;
01218           return 1;
01219         }
01220       else
01221         {
01222           struct regcache *regcache;
01223           regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
01224           cache->regcache = regcache_dup (regcache);
01225           *this_prologue_cache = cache;
01226           return 1;
01227         }
01228     }
01229 
01230   return 0;
01231 }
01232 
01233 static void
01234 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
01235 {
01236   struct spu2ppu_cache *cache = this_cache;
01237   regcache_xfree (cache->regcache);
01238 }
01239 
01240 static const struct frame_unwind spu2ppu_unwind = {
01241   ARCH_FRAME,
01242   default_frame_unwind_stop_reason,
01243   spu2ppu_this_id,
01244   spu2ppu_prev_register,
01245   NULL,
01246   spu2ppu_sniffer,
01247   spu2ppu_dealloc_cache,
01248   spu2ppu_prev_arch,
01249 };
01250 
01251 
01252 /* Function calling convention.  */
01253 
01254 static CORE_ADDR
01255 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
01256 {
01257   return sp & ~15;
01258 }
01259 
01260 static CORE_ADDR
01261 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
01262                      struct value **args, int nargs, struct type *value_type,
01263                      CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
01264                      struct regcache *regcache)
01265 {
01266   /* Allocate space sufficient for a breakpoint, keeping the stack aligned.  */
01267   sp = (sp - 4) & ~15;
01268   /* Store the address of that breakpoint */
01269   *bp_addr = sp;
01270   /* The call starts at the callee's entry point.  */
01271   *real_pc = funaddr;
01272 
01273   return sp;
01274 }
01275 
01276 static int
01277 spu_scalar_value_p (struct type *type)
01278 {
01279   switch (TYPE_CODE (type))
01280     {
01281     case TYPE_CODE_INT:
01282     case TYPE_CODE_ENUM:
01283     case TYPE_CODE_RANGE:
01284     case TYPE_CODE_CHAR:
01285     case TYPE_CODE_BOOL:
01286     case TYPE_CODE_PTR:
01287     case TYPE_CODE_REF:
01288       return TYPE_LENGTH (type) <= 16;
01289 
01290     default:
01291       return 0;
01292     }
01293 }
01294 
01295 static void
01296 spu_value_to_regcache (struct regcache *regcache, int regnum,
01297                        struct type *type, const gdb_byte *in)
01298 {
01299   int len = TYPE_LENGTH (type);
01300 
01301   if (spu_scalar_value_p (type))
01302     {
01303       int preferred_slot = len < 4 ? 4 - len : 0;
01304       regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
01305     }
01306   else
01307     {
01308       while (len >= 16)
01309         {
01310           regcache_cooked_write (regcache, regnum++, in);
01311           in += 16;
01312           len -= 16;
01313         }
01314 
01315       if (len > 0)
01316         regcache_cooked_write_part (regcache, regnum, 0, len, in);
01317     }
01318 }
01319 
01320 static void
01321 spu_regcache_to_value (struct regcache *regcache, int regnum,
01322                        struct type *type, gdb_byte *out)
01323 {
01324   int len = TYPE_LENGTH (type);
01325 
01326   if (spu_scalar_value_p (type))
01327     {
01328       int preferred_slot = len < 4 ? 4 - len : 0;
01329       regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
01330     }
01331   else
01332     {
01333       while (len >= 16)
01334         {
01335           regcache_cooked_read (regcache, regnum++, out);
01336           out += 16;
01337           len -= 16;
01338         }
01339 
01340       if (len > 0)
01341         regcache_cooked_read_part (regcache, regnum, 0, len, out);
01342     }
01343 }
01344 
01345 static CORE_ADDR
01346 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
01347                      struct regcache *regcache, CORE_ADDR bp_addr,
01348                      int nargs, struct value **args, CORE_ADDR sp,
01349                      int struct_return, CORE_ADDR struct_addr)
01350 {
01351   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01352   CORE_ADDR sp_delta;
01353   int i;
01354   int regnum = SPU_ARG1_REGNUM;
01355   int stack_arg = -1;
01356   gdb_byte buf[16];
01357 
01358   /* Set the return address.  */
01359   memset (buf, 0, sizeof buf);
01360   store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
01361   regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
01362 
01363   /* If STRUCT_RETURN is true, then the struct return address (in
01364      STRUCT_ADDR) will consume the first argument-passing register.
01365      Both adjust the register count and store that value.  */
01366   if (struct_return)
01367     {
01368       memset (buf, 0, sizeof buf);
01369       store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
01370       regcache_cooked_write (regcache, regnum++, buf);
01371     }
01372 
01373   /* Fill in argument registers.  */
01374   for (i = 0; i < nargs; i++)
01375     {
01376       struct value *arg = args[i];
01377       struct type *type = check_typedef (value_type (arg));
01378       const gdb_byte *contents = value_contents (arg);
01379       int n_regs = align_up (TYPE_LENGTH (type), 16) / 16;
01380 
01381       /* If the argument doesn't wholly fit into registers, it and
01382          all subsequent arguments go to the stack.  */
01383       if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
01384         {
01385           stack_arg = i;
01386           break;
01387         }
01388 
01389       spu_value_to_regcache (regcache, regnum, type, contents);
01390       regnum += n_regs;
01391     }
01392 
01393   /* Overflow arguments go to the stack.  */
01394   if (stack_arg != -1)
01395     {
01396       CORE_ADDR ap;
01397 
01398       /* Allocate all required stack size.  */
01399       for (i = stack_arg; i < nargs; i++)
01400         {
01401           struct type *type = check_typedef (value_type (args[i]));
01402           sp -= align_up (TYPE_LENGTH (type), 16);
01403         }
01404 
01405       /* Fill in stack arguments.  */
01406       ap = sp;
01407       for (i = stack_arg; i < nargs; i++)
01408         {
01409           struct value *arg = args[i];
01410           struct type *type = check_typedef (value_type (arg));
01411           int len = TYPE_LENGTH (type);
01412           int preferred_slot;
01413           
01414           if (spu_scalar_value_p (type))
01415             preferred_slot = len < 4 ? 4 - len : 0;
01416           else
01417             preferred_slot = 0;
01418 
01419           target_write_memory (ap + preferred_slot, value_contents (arg), len);
01420           ap += align_up (TYPE_LENGTH (type), 16);
01421         }
01422     }
01423 
01424   /* Allocate stack frame header.  */
01425   sp -= 32;
01426 
01427   /* Store stack back chain.  */
01428   regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
01429   target_write_memory (sp, buf, 16);
01430 
01431   /* Finally, update all slots of the SP register.  */
01432   sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
01433   for (i = 0; i < 4; i++)
01434     {
01435       CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
01436       store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
01437     }
01438   regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
01439 
01440   return sp;
01441 }
01442 
01443 static struct frame_id
01444 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
01445 {
01446   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01447   CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
01448   CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
01449   return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
01450 }
01451 
01452 /* Function return value access.  */
01453 
01454 static enum return_value_convention
01455 spu_return_value (struct gdbarch *gdbarch, struct value *function,
01456                   struct type *type, struct regcache *regcache,
01457                   gdb_byte *out, const gdb_byte *in)
01458 {
01459   struct type *func_type = function ? value_type (function) : NULL;
01460   enum return_value_convention rvc;
01461   int opencl_vector = 0;
01462 
01463   if (func_type)
01464     {
01465       func_type = check_typedef (func_type);
01466 
01467       if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
01468         func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
01469 
01470       if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
01471           && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GDB_IBM_OpenCL
01472           && TYPE_CODE (type) == TYPE_CODE_ARRAY
01473           && TYPE_VECTOR (type))
01474         opencl_vector = 1;
01475     }
01476 
01477   if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
01478     rvc = RETURN_VALUE_REGISTER_CONVENTION;
01479   else
01480     rvc = RETURN_VALUE_STRUCT_CONVENTION;
01481 
01482   if (in)
01483     {
01484       switch (rvc)
01485         {
01486         case RETURN_VALUE_REGISTER_CONVENTION:
01487           if (opencl_vector && TYPE_LENGTH (type) == 2)
01488             regcache_cooked_write_part (regcache, SPU_ARG1_REGNUM, 2, 2, in);
01489           else
01490             spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
01491           break;
01492 
01493         case RETURN_VALUE_STRUCT_CONVENTION:
01494           error (_("Cannot set function return value."));
01495           break;
01496         }
01497     }
01498   else if (out)
01499     {
01500       switch (rvc)
01501         {
01502         case RETURN_VALUE_REGISTER_CONVENTION:
01503           if (opencl_vector && TYPE_LENGTH (type) == 2)
01504             regcache_cooked_read_part (regcache, SPU_ARG1_REGNUM, 2, 2, out);
01505           else
01506             spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
01507           break;
01508 
01509         case RETURN_VALUE_STRUCT_CONVENTION:
01510           error (_("Function return value unknown."));
01511           break;
01512         }
01513     }
01514 
01515   return rvc;
01516 }
01517 
01518 
01519 /* Breakpoints.  */
01520 
01521 static const gdb_byte *
01522 spu_breakpoint_from_pc (struct gdbarch *gdbarch,
01523                         CORE_ADDR * pcptr, int *lenptr)
01524 {
01525   static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
01526 
01527   *lenptr = sizeof breakpoint;
01528   return breakpoint;
01529 }
01530 
01531 static int
01532 spu_memory_remove_breakpoint (struct gdbarch *gdbarch,
01533                               struct bp_target_info *bp_tgt)
01534 {
01535   /* We work around a problem in combined Cell/B.E. debugging here.  Consider
01536      that in a combined application, we have some breakpoints inserted in SPU
01537      code, and now the application forks (on the PPU side).  GDB common code
01538      will assume that the fork system call copied all breakpoints into the new
01539      process' address space, and that all those copies now need to be removed
01540      (see breakpoint.c:detach_breakpoints).
01541 
01542      While this is certainly true for PPU side breakpoints, it is not true
01543      for SPU side breakpoints.  fork will clone the SPU context file
01544      descriptors, so that all the existing SPU contexts are in accessible
01545      in the new process.  However, the contents of the SPU contexts themselves
01546      are *not* cloned.  Therefore the effect of detach_breakpoints is to
01547      remove SPU breakpoints from the *original* SPU context's local store
01548      -- this is not the correct behaviour.
01549 
01550      The workaround is to check whether the PID we are asked to remove this
01551      breakpoint from (i.e. ptid_get_pid (inferior_ptid)) is different from the
01552      PID of the current inferior (i.e. current_inferior ()->pid).  This is only
01553      true in the context of detach_breakpoints.  If so, we simply do nothing.
01554      [ Note that for the fork child process, it does not matter if breakpoints
01555      remain inserted, because those SPU contexts are not runnable anyway --
01556      the Linux kernel allows only the original process to invoke spu_run.  */
01557 
01558   if (ptid_get_pid (inferior_ptid) != current_inferior ()->pid) 
01559     return 0;
01560 
01561   return default_memory_remove_breakpoint (gdbarch, bp_tgt);
01562 }
01563 
01564 
01565 /* Software single-stepping support.  */
01566 
01567 static int
01568 spu_software_single_step (struct frame_info *frame)
01569 {
01570   struct gdbarch *gdbarch = get_frame_arch (frame);
01571   struct address_space *aspace = get_frame_address_space (frame);
01572   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01573   CORE_ADDR pc, next_pc;
01574   unsigned int insn;
01575   int offset, reg;
01576   gdb_byte buf[4];
01577   ULONGEST lslr;
01578 
01579   pc = get_frame_pc (frame);
01580 
01581   if (target_read_memory (pc, buf, 4))
01582     return 1;
01583   insn = extract_unsigned_integer (buf, 4, byte_order);
01584 
01585   /* Get local store limit.  */
01586   lslr = get_frame_register_unsigned (frame, SPU_LSLR_REGNUM);
01587   if (!lslr)
01588     lslr = (ULONGEST) -1;
01589 
01590   /* Next sequential instruction is at PC + 4, except if the current
01591      instruction is a PPE-assisted call, in which case it is at PC + 8.
01592      Wrap around LS limit to be on the safe side.  */
01593   if ((insn & 0xffffff00) == 0x00002100)
01594     next_pc = (SPUADDR_ADDR (pc) + 8) & lslr;
01595   else
01596     next_pc = (SPUADDR_ADDR (pc) + 4) & lslr;
01597 
01598   insert_single_step_breakpoint (gdbarch,
01599                                  aspace, SPUADDR (SPUADDR_SPU (pc), next_pc));
01600 
01601   if (is_branch (insn, &offset, &reg))
01602     {
01603       CORE_ADDR target = offset;
01604 
01605       if (reg == SPU_PC_REGNUM)
01606         target += SPUADDR_ADDR (pc);
01607       else if (reg != -1)
01608         {
01609           int optim, unavail;
01610 
01611           if (get_frame_register_bytes (frame, reg, 0, 4, buf,
01612                                          &optim, &unavail))
01613             target += extract_unsigned_integer (buf, 4, byte_order) & -4;
01614           else
01615             {
01616               if (optim)
01617                 error (_("Could not determine address of "
01618                          "single-step breakpoint."));
01619               if (unavail)
01620                 throw_error (NOT_AVAILABLE_ERROR,
01621                              _("Could not determine address of "
01622                                "single-step breakpoint."));
01623             }
01624         }
01625 
01626       target = target & lslr;
01627       if (target != next_pc)
01628         insert_single_step_breakpoint (gdbarch, aspace,
01629                                        SPUADDR (SPUADDR_SPU (pc), target));
01630     }
01631 
01632   return 1;
01633 }
01634 
01635 
01636 /* Longjmp support.  */
01637 
01638 static int
01639 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
01640 {
01641   struct gdbarch *gdbarch = get_frame_arch (frame);
01642   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01643   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01644   gdb_byte buf[4];
01645   CORE_ADDR jb_addr;
01646   int optim, unavail;
01647 
01648   /* Jump buffer is pointed to by the argument register $r3.  */
01649   if (!get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf,
01650                                  &optim, &unavail))
01651     return 0;
01652 
01653   jb_addr = extract_unsigned_integer (buf, 4, byte_order);
01654   if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
01655     return 0;
01656 
01657   *pc = extract_unsigned_integer (buf, 4, byte_order);
01658   *pc = SPUADDR (tdep->id, *pc);
01659   return 1;
01660 }
01661 
01662 
01663 /* Disassembler.  */
01664 
01665 struct spu_dis_asm_data
01666 {
01667   struct gdbarch *gdbarch;
01668   int id;
01669 };
01670 
01671 static void
01672 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
01673 {
01674   struct spu_dis_asm_data *data = info->application_data;
01675   print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
01676 }
01677 
01678 static int
01679 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
01680 {
01681   /* The opcodes disassembler does 18-bit address arithmetic.  Make
01682      sure the SPU ID encoded in the high bits is added back when we
01683      call print_address.  */
01684   struct disassemble_info spu_info = *info;
01685   struct spu_dis_asm_data data;
01686   data.gdbarch = info->application_data;
01687   data.id = SPUADDR_SPU (memaddr);
01688 
01689   spu_info.application_data = &data;
01690   spu_info.print_address_func = spu_dis_asm_print_address;
01691   return print_insn_spu (memaddr, &spu_info);
01692 }
01693 
01694 
01695 /* Target overlays for the SPU overlay manager.
01696 
01697    See the documentation of simple_overlay_update for how the
01698    interface is supposed to work.
01699 
01700    Data structures used by the overlay manager:
01701 
01702    struct ovly_table
01703      {
01704         u32 vma;
01705         u32 size;
01706         u32 pos;
01707         u32 buf;
01708      } _ovly_table[];   -- one entry per overlay section
01709 
01710    struct ovly_buf_table
01711      {
01712         u32 mapped;
01713      } _ovly_buf_table[];  -- one entry per overlay buffer
01714 
01715    _ovly_table should never change.
01716 
01717    Both tables are aligned to a 16-byte boundary, the symbols
01718    _ovly_table and _ovly_buf_table are of type STT_OBJECT and their
01719    size set to the size of the respective array. buf in _ovly_table is
01720    an index into _ovly_buf_table.
01721 
01722    mapped is an index into _ovly_table.  Both the mapped and buf indices start
01723    from one to reference the first entry in their respective tables.  */
01724 
01725 /* Using the per-objfile private data mechanism, we store for each
01726    objfile an array of "struct spu_overlay_table" structures, one
01727    for each obj_section of the objfile.  This structure holds two
01728    fields, MAPPED_PTR and MAPPED_VAL.  If MAPPED_PTR is zero, this
01729    is *not* an overlay section.  If it is non-zero, it represents
01730    a target address.  The overlay section is mapped iff the target
01731    integer at this location equals MAPPED_VAL.  */
01732 
01733 static const struct objfile_data *spu_overlay_data;
01734 
01735 struct spu_overlay_table
01736   {
01737     CORE_ADDR mapped_ptr;
01738     CORE_ADDR mapped_val;
01739   };
01740 
01741 /* Retrieve the overlay table for OBJFILE.  If not already cached, read
01742    the _ovly_table data structure from the target and initialize the
01743    spu_overlay_table data structure from it.  */
01744 static struct spu_overlay_table *
01745 spu_get_overlay_table (struct objfile *objfile)
01746 {
01747   enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
01748                    BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
01749   struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
01750   CORE_ADDR ovly_table_base, ovly_buf_table_base;
01751   unsigned ovly_table_size, ovly_buf_table_size;
01752   struct spu_overlay_table *tbl;
01753   struct obj_section *osect;
01754   gdb_byte *ovly_table;
01755   int i;
01756 
01757   tbl = objfile_data (objfile, spu_overlay_data);
01758   if (tbl)
01759     return tbl;
01760 
01761   ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
01762   if (!ovly_table_msym)
01763     return NULL;
01764 
01765   ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table",
01766                                                NULL, objfile);
01767   if (!ovly_buf_table_msym)
01768     return NULL;
01769 
01770   ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
01771   ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
01772 
01773   ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
01774   ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
01775 
01776   ovly_table = xmalloc (ovly_table_size);
01777   read_memory (ovly_table_base, ovly_table, ovly_table_size);
01778 
01779   tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
01780                         objfile->sections_end - objfile->sections,
01781                         struct spu_overlay_table);
01782 
01783   for (i = 0; i < ovly_table_size / 16; i++)
01784     {
01785       CORE_ADDR vma  = extract_unsigned_integer (ovly_table + 16*i + 0,
01786                                                  4, byte_order);
01787       CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
01788                                                  4, byte_order);
01789       CORE_ADDR pos  = extract_unsigned_integer (ovly_table + 16*i + 8,
01790                                                  4, byte_order);
01791       CORE_ADDR buf  = extract_unsigned_integer (ovly_table + 16*i + 12,
01792                                                  4, byte_order);
01793 
01794       if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
01795         continue;
01796 
01797       ALL_OBJFILE_OSECTIONS (objfile, osect)
01798         if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
01799             && pos == osect->the_bfd_section->filepos)
01800           {
01801             int ndx = osect - objfile->sections;
01802             tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
01803             tbl[ndx].mapped_val = i + 1;
01804             break;
01805           }
01806     }
01807 
01808   xfree (ovly_table);
01809   set_objfile_data (objfile, spu_overlay_data, tbl);
01810   return tbl;
01811 }
01812 
01813 /* Read _ovly_buf_table entry from the target to dermine whether
01814    OSECT is currently mapped, and update the mapped state.  */
01815 static void
01816 spu_overlay_update_osect (struct obj_section *osect)
01817 {
01818   enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
01819                    BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
01820   struct spu_overlay_table *ovly_table;
01821   CORE_ADDR id, val;
01822 
01823   ovly_table = spu_get_overlay_table (osect->objfile);
01824   if (!ovly_table)
01825     return;
01826 
01827   ovly_table += osect - osect->objfile->sections;
01828   if (ovly_table->mapped_ptr == 0)
01829     return;
01830 
01831   id = SPUADDR_SPU (obj_section_addr (osect));
01832   val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
01833                                       4, byte_order);
01834   osect->ovly_mapped = (val == ovly_table->mapped_val);
01835 }
01836 
01837 /* If OSECT is NULL, then update all sections' mapped state.
01838    If OSECT is non-NULL, then update only OSECT's mapped state.  */
01839 static void
01840 spu_overlay_update (struct obj_section *osect)
01841 {
01842   /* Just one section.  */
01843   if (osect)
01844     spu_overlay_update_osect (osect);
01845 
01846   /* All sections.  */
01847   else
01848     {
01849       struct objfile *objfile;
01850 
01851       ALL_OBJSECTIONS (objfile, osect)
01852         if (section_is_overlay (osect))
01853           spu_overlay_update_osect (osect);
01854     }
01855 }
01856 
01857 /* Whenever a new objfile is loaded, read the target's _ovly_table.
01858    If there is one, go through all sections and make sure for non-
01859    overlay sections LMA equals VMA, while for overlay sections LMA
01860    is larger than SPU_OVERLAY_LMA.  */
01861 static void
01862 spu_overlay_new_objfile (struct objfile *objfile)
01863 {
01864   struct spu_overlay_table *ovly_table;
01865   struct obj_section *osect;
01866 
01867   /* If we've already touched this file, do nothing.  */
01868   if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
01869     return;
01870 
01871   /* Consider only SPU objfiles.  */
01872   if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
01873     return;
01874 
01875   /* Check if this objfile has overlays.  */
01876   ovly_table = spu_get_overlay_table (objfile);
01877   if (!ovly_table)
01878     return;
01879 
01880   /* Now go and fiddle with all the LMAs.  */
01881   ALL_OBJFILE_OSECTIONS (objfile, osect)
01882     {
01883       bfd *obfd = objfile->obfd;
01884       asection *bsect = osect->the_bfd_section;
01885       int ndx = osect - objfile->sections;
01886 
01887       if (ovly_table[ndx].mapped_ptr == 0)
01888         bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
01889       else
01890         bfd_section_lma (obfd, bsect) = SPU_OVERLAY_LMA + bsect->filepos;
01891     }
01892 }
01893 
01894 
01895 /* Insert temporary breakpoint on "main" function of newly loaded
01896    SPE context OBJFILE.  */
01897 static void
01898 spu_catch_start (struct objfile *objfile)
01899 {
01900   struct minimal_symbol *minsym;
01901   struct symtab *symtab;
01902   CORE_ADDR pc;
01903   char buf[32];
01904 
01905   /* Do this only if requested by "set spu stop-on-load on".  */
01906   if (!spu_stop_on_load_p)
01907     return;
01908 
01909   /* Consider only SPU objfiles.  */
01910   if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
01911     return;
01912 
01913   /* The main objfile is handled differently.  */
01914   if (objfile == symfile_objfile)
01915     return;
01916 
01917   /* There can be multiple symbols named "main".  Search for the
01918      "main" in *this* objfile.  */
01919   minsym = lookup_minimal_symbol ("main", NULL, objfile);
01920   if (!minsym)
01921     return;
01922 
01923   /* If we have debugging information, try to use it -- this
01924      will allow us to properly skip the prologue.  */
01925   pc = SYMBOL_VALUE_ADDRESS (minsym);
01926   symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (objfile, minsym));
01927   if (symtab != NULL)
01928     {
01929       struct blockvector *bv = BLOCKVECTOR (symtab);
01930       struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
01931       struct symbol *sym;
01932       struct symtab_and_line sal;
01933 
01934       sym = lookup_block_symbol (block, "main", VAR_DOMAIN);
01935       if (sym)
01936         {
01937           fixup_symbol_section (sym, objfile);
01938           sal = find_function_start_sal (sym, 1);
01939           pc = sal.pc;
01940         }
01941     }
01942 
01943   /* Use a numerical address for the set_breakpoint command to avoid having
01944      the breakpoint re-set incorrectly.  */
01945   xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
01946   create_breakpoint (get_objfile_arch (objfile), buf /* arg */,
01947                      NULL /* cond_string */, -1 /* thread */,
01948                      NULL /* extra_string */,
01949                      0 /* parse_condition_and_thread */, 1 /* tempflag */,
01950                      bp_breakpoint /* type_wanted */,
01951                      0 /* ignore_count */,
01952                      AUTO_BOOLEAN_FALSE /* pending_break_support */,
01953                      &bkpt_breakpoint_ops /* ops */, 0 /* from_tty */,
01954                      1 /* enabled */, 0 /* internal  */, 0);
01955 }
01956 
01957 
01958 /* Look up OBJFILE loaded into FRAME's SPU context.  */
01959 static struct objfile *
01960 spu_objfile_from_frame (struct frame_info *frame)
01961 {
01962   struct gdbarch *gdbarch = get_frame_arch (frame);
01963   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
01964   struct objfile *obj;
01965 
01966   if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
01967     return NULL;
01968 
01969   ALL_OBJFILES (obj)
01970     {
01971       if (obj->sections != obj->sections_end
01972           && SPUADDR_SPU (obj_section_addr (obj->sections)) == tdep->id)
01973         return obj;
01974     }
01975 
01976   return NULL;
01977 }
01978 
01979 /* Flush cache for ea pointer access if available.  */
01980 static void
01981 flush_ea_cache (void)
01982 {
01983   struct minimal_symbol *msymbol;
01984   struct objfile *obj;
01985 
01986   if (!has_stack_frames ())
01987     return;
01988 
01989   obj = spu_objfile_from_frame (get_current_frame ());
01990   if (obj == NULL)
01991     return;
01992 
01993   /* Lookup inferior function __cache_flush.  */
01994   msymbol = lookup_minimal_symbol ("__cache_flush", NULL, obj);
01995   if (msymbol != NULL)
01996     {
01997       struct type *type;
01998       CORE_ADDR addr;
01999 
02000       type = objfile_type (obj)->builtin_void;
02001       type = lookup_function_type (type);
02002       type = lookup_pointer_type (type);
02003       addr = SYMBOL_VALUE_ADDRESS (msymbol);
02004 
02005       call_function_by_hand (value_from_pointer (type, addr), 0, NULL);
02006     }
02007 }
02008 
02009 /* This handler is called when the inferior has stopped.  If it is stopped in
02010    SPU architecture then flush the ea cache if used.  */
02011 static void
02012 spu_attach_normal_stop (struct bpstats *bs, int print_frame)
02013 {
02014   if (!spu_auto_flush_cache_p)
02015     return;
02016 
02017   /* Temporarily reset spu_auto_flush_cache_p to avoid recursively
02018      re-entering this function when __cache_flush stops.  */
02019   spu_auto_flush_cache_p = 0;
02020   flush_ea_cache ();
02021   spu_auto_flush_cache_p = 1;
02022 }
02023 
02024 
02025 /* "info spu" commands.  */
02026 
02027 static void
02028 info_spu_event_command (char *args, int from_tty)
02029 {
02030   struct frame_info *frame = get_selected_frame (NULL);
02031   ULONGEST event_status = 0;
02032   ULONGEST event_mask = 0;
02033   struct cleanup *chain;
02034   gdb_byte buf[100];
02035   char annex[32];
02036   LONGEST len;
02037   int id;
02038 
02039   if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
02040     error (_("\"info spu\" is only supported on the SPU architecture."));
02041 
02042   id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
02043 
02044   xsnprintf (annex, sizeof annex, "%d/event_status", id);
02045   len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
02046                      buf, 0, (sizeof (buf) - 1));
02047   if (len <= 0)
02048     error (_("Could not read event_status."));
02049   buf[len] = '\0';
02050   event_status = strtoulst ((char *) buf, NULL, 16);
02051  
02052   xsnprintf (annex, sizeof annex, "%d/event_mask", id);
02053   len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
02054                      buf, 0, (sizeof (buf) - 1));
02055   if (len <= 0)
02056     error (_("Could not read event_mask."));
02057   buf[len] = '\0';
02058   event_mask = strtoulst ((char *) buf, NULL, 16);
02059  
02060   chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoEvent");
02061 
02062   if (ui_out_is_mi_like_p (current_uiout))
02063     {
02064       ui_out_field_fmt (current_uiout, "event_status",
02065                         "0x%s", phex_nz (event_status, 4));
02066       ui_out_field_fmt (current_uiout, "event_mask",
02067                         "0x%s", phex_nz (event_mask, 4));
02068     }
02069   else
02070     {
02071       printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
02072       printf_filtered (_("Event Mask   0x%s\n"), phex (event_mask, 4));
02073     }
02074 
02075   do_cleanups (chain);
02076 }
02077 
02078 static void
02079 info_spu_signal_command (char *args, int from_tty)
02080 {
02081   struct frame_info *frame = get_selected_frame (NULL);
02082   struct gdbarch *gdbarch = get_frame_arch (frame);
02083   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
02084   ULONGEST signal1 = 0;
02085   ULONGEST signal1_type = 0;
02086   int signal1_pending = 0;
02087   ULONGEST signal2 = 0;
02088   ULONGEST signal2_type = 0;
02089   int signal2_pending = 0;
02090   struct cleanup *chain;
02091   char annex[32];
02092   gdb_byte buf[100];
02093   LONGEST len;
02094   int id;
02095 
02096   if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
02097     error (_("\"info spu\" is only supported on the SPU architecture."));
02098 
02099   id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
02100 
02101   xsnprintf (annex, sizeof annex, "%d/signal1", id);
02102   len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
02103   if (len < 0)
02104     error (_("Could not read signal1."));
02105   else if (len == 4)
02106     {
02107       signal1 = extract_unsigned_integer (buf, 4, byte_order);
02108       signal1_pending = 1;
02109     }
02110     
02111   xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
02112   len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
02113                      buf, 0, (sizeof (buf) - 1));
02114   if (len <= 0)
02115     error (_("Could not read signal1_type."));
02116   buf[len] = '\0';
02117   signal1_type = strtoulst ((char *) buf, NULL, 16);
02118 
02119   xsnprintf (annex, sizeof annex, "%d/signal2", id);
02120   len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
02121   if (len < 0)
02122     error (_("Could not read signal2."));
02123   else if (len == 4)
02124     {
02125       signal2 = extract_unsigned_integer (buf, 4, byte_order);
02126       signal2_pending = 1;
02127     }
02128     
02129   xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
02130   len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
02131                      buf, 0, (sizeof (buf) - 1));
02132   if (len <= 0)
02133     error (_("Could not read signal2_type."));
02134   buf[len] = '\0';
02135   signal2_type = strtoulst ((char *) buf, NULL, 16);
02136 
02137   chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoSignal");
02138 
02139   if (ui_out_is_mi_like_p (current_uiout))
02140     {
02141       ui_out_field_int (current_uiout, "signal1_pending", signal1_pending);
02142       ui_out_field_fmt (current_uiout, "signal1", "0x%s", phex_nz (signal1, 4));
02143       ui_out_field_int (current_uiout, "signal1_type", signal1_type);
02144       ui_out_field_int (current_uiout, "signal2_pending", signal2_pending);
02145       ui_out_field_fmt (current_uiout, "signal2", "0x%s", phex_nz (signal2, 4));
02146       ui_out_field_int (current_uiout, "signal2_type", signal2_type);
02147     }
02148   else
02149     {
02150       if (signal1_pending)
02151         printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
02152       else
02153         printf_filtered (_("Signal 1 not pending "));
02154 
02155       if (signal1_type)
02156         printf_filtered (_("(Type Or)\n"));
02157       else
02158         printf_filtered (_("(Type Overwrite)\n"));
02159 
02160       if (signal2_pending)
02161         printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
02162       else
02163         printf_filtered (_("Signal 2 not pending "));
02164 
02165       if (signal2_type)
02166         printf_filtered (_("(Type Or)\n"));
02167       else
02168         printf_filtered (_("(Type Overwrite)\n"));
02169     }
02170 
02171   do_cleanups (chain);
02172 }
02173 
02174 static void
02175 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
02176                        const char *field, const char *msg)
02177 {
02178   struct cleanup *chain;
02179   int i;
02180 
02181   if (nr <= 0)
02182     return;
02183 
02184   chain = make_cleanup_ui_out_table_begin_end (current_uiout, 1, nr, "mbox");
02185 
02186   ui_out_table_header (current_uiout, 32, ui_left, field, msg);
02187   ui_out_table_body (current_uiout);
02188 
02189   for (i = 0; i < nr; i++)
02190     {
02191       struct cleanup *val_chain;
02192       ULONGEST val;
02193       val_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "mbox");
02194       val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
02195       ui_out_field_fmt (current_uiout, field, "0x%s", phex (val, 4));
02196       do_cleanups (val_chain);
02197 
02198       if (!ui_out_is_mi_like_p (current_uiout))
02199         printf_filtered ("\n");
02200     }
02201 
02202   do_cleanups (chain);
02203 }
02204 
02205 static void
02206 info_spu_mailbox_command (char *args, int from_tty)
02207 {
02208   struct frame_info *frame = get_selected_frame (NULL);
02209   struct gdbarch *gdbarch = get_frame_arch (frame);
02210   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
02211   struct cleanup *chain;
02212   char annex[32];
02213   gdb_byte buf[1024];
02214   LONGEST len;
02215   int id;
02216 
02217   if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
02218     error (_("\"info spu\" is only supported on the SPU architecture."));
02219 
02220   id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
02221 
02222   chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoMailbox");
02223 
02224   xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
02225   len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
02226                      buf, 0, sizeof buf);
02227   if (len < 0)
02228     error (_("Could not read mbox_info."));
02229 
02230   info_spu_mailbox_list (buf, len / 4, byte_order,
02231                          "mbox", "SPU Outbound Mailbox");
02232 
02233   xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
02234   len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
02235                      buf, 0, sizeof buf);
02236   if (len < 0)
02237     error (_("Could not read ibox_info."));
02238 
02239   info_spu_mailbox_list (buf, len / 4, byte_order,
02240                          "ibox", "SPU Outbound Interrupt Mailbox");
02241 
02242   xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
02243   len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
02244                      buf, 0, sizeof buf);
02245   if (len < 0)
02246     error (_("Could not read wbox_info."));
02247 
02248   info_spu_mailbox_list (buf, len / 4, byte_order,
02249                          "wbox", "SPU Inbound Mailbox");
02250 
02251   do_cleanups (chain);
02252 }
02253 
02254 static ULONGEST
02255 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
02256 {
02257   ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
02258   return (word >> (63 - last)) & mask;
02259 }
02260 
02261 static void
02262 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
02263 {
02264   static char *spu_mfc_opcode[256] =
02265     {
02266     /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02267              NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02268     /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02269              NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02270     /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
02271              "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
02272     /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
02273              NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02274     /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
02275              "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
02276     /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02277              NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02278     /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02279              NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02280     /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02281              NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02282     /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
02283              NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
02284     /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02285              NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02286     /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
02287              NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02288     /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
02289              "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02290     /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02291              "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
02292     /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02293              NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02294     /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02295              NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02296     /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02297              NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
02298     };
02299 
02300   int *seq = alloca (nr * sizeof (int));
02301   int done = 0;
02302   struct cleanup *chain;
02303   int i, j;
02304 
02305 
02306   /* Determine sequence in which to display (valid) entries.  */
02307   for (i = 0; i < nr; i++)
02308     {
02309       /* Search for the first valid entry all of whose
02310          dependencies are met.  */
02311       for (j = 0; j < nr; j++)
02312         {
02313           ULONGEST mfc_cq_dw3;
02314           ULONGEST dependencies;
02315 
02316           if (done & (1 << (nr - 1 - j)))
02317             continue;
02318 
02319           mfc_cq_dw3
02320             = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
02321           if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
02322             continue;
02323 
02324           dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
02325           if ((dependencies & done) != dependencies)
02326             continue;
02327 
02328           seq[i] = j;
02329           done |= 1 << (nr - 1 - j);
02330           break;
02331         }
02332 
02333       if (j == nr)
02334         break;
02335     }
02336 
02337   nr = i;
02338 
02339 
02340   chain = make_cleanup_ui_out_table_begin_end (current_uiout, 10, nr,
02341                                                "dma_cmd");
02342 
02343   ui_out_table_header (current_uiout, 7, ui_left, "opcode", "Opcode");
02344   ui_out_table_header (current_uiout, 3, ui_left, "tag", "Tag");
02345   ui_out_table_header (current_uiout, 3, ui_left, "tid", "TId");
02346   ui_out_table_header (current_uiout, 3, ui_left, "rid", "RId");
02347   ui_out_table_header (current_uiout, 18, ui_left, "ea", "EA");
02348   ui_out_table_header (current_uiout, 7, ui_left, "lsa", "LSA");
02349   ui_out_table_header (current_uiout, 7, ui_left, "size", "Size");
02350   ui_out_table_header (current_uiout, 7, ui_left, "lstaddr", "LstAddr");
02351   ui_out_table_header (current_uiout, 7, ui_left, "lstsize", "LstSize");
02352   ui_out_table_header (current_uiout, 1, ui_left, "error_p", "E");
02353 
02354   ui_out_table_body (current_uiout);
02355 
02356   for (i = 0; i < nr; i++)
02357     {
02358       struct cleanup *cmd_chain;
02359       ULONGEST mfc_cq_dw0;
02360       ULONGEST mfc_cq_dw1;
02361       ULONGEST mfc_cq_dw2;
02362       int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
02363       int list_lsa, list_size, mfc_lsa, mfc_size;
02364       ULONGEST mfc_ea;
02365       int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
02366 
02367       /* Decode contents of MFC Command Queue Context Save/Restore Registers.
02368          See "Cell Broadband Engine Registers V1.3", section 3.3.2.1.  */
02369 
02370       mfc_cq_dw0
02371         = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
02372       mfc_cq_dw1
02373         = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
02374       mfc_cq_dw2
02375         = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
02376 
02377       list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
02378       list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
02379       mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
02380       mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
02381       list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
02382       rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
02383       tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
02384 
02385       mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
02386                 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
02387 
02388       mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
02389       mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
02390       noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
02391       qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
02392       ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
02393       cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
02394 
02395       cmd_chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "cmd");
02396 
02397       if (spu_mfc_opcode[mfc_cmd_opcode])
02398         ui_out_field_string (current_uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
02399       else
02400         ui_out_field_int (current_uiout, "opcode", mfc_cmd_opcode);
02401 
02402       ui_out_field_int (current_uiout, "tag", mfc_cmd_tag);
02403       ui_out_field_int (current_uiout, "tid", tclass_id);
02404       ui_out_field_int (current_uiout, "rid", rclass_id);
02405 
02406       if (ea_valid_p)
02407         ui_out_field_fmt (current_uiout, "ea", "0x%s", phex (mfc_ea, 8));
02408       else
02409         ui_out_field_skip (current_uiout, "ea");
02410 
02411       ui_out_field_fmt (current_uiout, "lsa", "0x%05x", mfc_lsa << 4);
02412       if (qw_valid_p)
02413         ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size << 4);
02414       else
02415         ui_out_field_fmt (current_uiout, "size", "0x%05x", mfc_size);
02416 
02417       if (list_valid_p)
02418         {
02419           ui_out_field_fmt (current_uiout, "lstaddr", "0x%05x", list_lsa << 3);
02420           ui_out_field_fmt (current_uiout, "lstsize", "0x%05x", list_size << 3);
02421         }
02422       else
02423         {
02424           ui_out_field_skip (current_uiout, "lstaddr");
02425           ui_out_field_skip (current_uiout, "lstsize");
02426         }
02427 
02428       if (cmd_error_p)
02429         ui_out_field_string (current_uiout, "error_p", "*");
02430       else
02431         ui_out_field_skip (current_uiout, "error_p");
02432 
02433       do_cleanups (cmd_chain);
02434 
02435       if (!ui_out_is_mi_like_p (current_uiout))
02436         printf_filtered ("\n");
02437     }
02438 
02439   do_cleanups (chain);
02440 }
02441 
02442 static void
02443 info_spu_dma_command (char *args, int from_tty)
02444 {
02445   struct frame_info *frame = get_selected_frame (NULL);
02446   struct gdbarch *gdbarch = get_frame_arch (frame);
02447   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
02448   ULONGEST dma_info_type;
02449   ULONGEST dma_info_mask;
02450   ULONGEST dma_info_status;
02451   ULONGEST dma_info_stall_and_notify;
02452   ULONGEST dma_info_atomic_command_status;
02453   struct cleanup *chain;
02454   char annex[32];
02455   gdb_byte buf[1024];
02456   LONGEST len;
02457   int id;
02458 
02459   if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
02460     error (_("\"info spu\" is only supported on the SPU architecture."));
02461 
02462   id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
02463 
02464   xsnprintf (annex, sizeof annex, "%d/dma_info", id);
02465   len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
02466                      buf, 0, 40 + 16 * 32);
02467   if (len <= 0)
02468     error (_("Could not read dma_info."));
02469 
02470   dma_info_type
02471     = extract_unsigned_integer (buf, 8, byte_order);
02472   dma_info_mask
02473     = extract_unsigned_integer (buf + 8, 8, byte_order);
02474   dma_info_status
02475     = extract_unsigned_integer (buf + 16, 8, byte_order);
02476   dma_info_stall_and_notify
02477     = extract_unsigned_integer (buf + 24, 8, byte_order);
02478   dma_info_atomic_command_status
02479     = extract_unsigned_integer (buf + 32, 8, byte_order);
02480   
02481   chain = make_cleanup_ui_out_tuple_begin_end (current_uiout, "SPUInfoDMA");
02482 
02483   if (ui_out_is_mi_like_p (current_uiout))
02484     {
02485       ui_out_field_fmt (current_uiout, "dma_info_type", "0x%s",
02486                         phex_nz (dma_info_type, 4));
02487       ui_out_field_fmt (current_uiout, "dma_info_mask", "0x%s",
02488                         phex_nz (dma_info_mask, 4));
02489       ui_out_field_fmt (current_uiout, "dma_info_status", "0x%s",
02490                         phex_nz (dma_info_status, 4));
02491       ui_out_field_fmt (current_uiout, "dma_info_stall_and_notify", "0x%s",
02492                         phex_nz (dma_info_stall_and_notify, 4));
02493       ui_out_field_fmt (current_uiout, "dma_info_atomic_command_status", "0x%s",
02494                         phex_nz (dma_info_atomic_command_status, 4));
02495     }
02496   else
02497     {
02498       const char *query_msg = _("no query pending");
02499 
02500       if (dma_info_type & 4)
02501         switch (dma_info_type & 3)
02502           {
02503             case 1: query_msg = _("'any' query pending"); break;
02504             case 2: query_msg = _("'all' query pending"); break;
02505             default: query_msg = _("undefined query type"); break;
02506           }
02507 
02508       printf_filtered (_("Tag-Group Status  0x%s\n"),
02509                        phex (dma_info_status, 4));
02510       printf_filtered (_("Tag-Group Mask    0x%s (%s)\n"),
02511                        phex (dma_info_mask, 4), query_msg);
02512       printf_filtered (_("Stall-and-Notify  0x%s\n"),
02513                        phex (dma_info_stall_and_notify, 4));
02514       printf_filtered (_("Atomic Cmd Status 0x%s\n"),
02515                        phex (dma_info_atomic_command_status, 4));
02516       printf_filtered ("\n");
02517     }
02518 
02519   info_spu_dma_cmdlist (buf + 40, 16, byte_order);
02520   do_cleanups (chain);
02521 }
02522 
02523 static void
02524 info_spu_proxydma_command (char *args, int from_tty)
02525 {
02526   struct frame_info *frame = get_selected_frame (NULL);
02527   struct gdbarch *gdbarch = get_frame_arch (frame);
02528   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
02529   ULONGEST dma_info_type;
02530   ULONGEST dma_info_mask;
02531   ULONGEST dma_info_status;
02532   struct cleanup *chain;
02533   char annex[32];
02534   gdb_byte buf[1024];
02535   LONGEST len;
02536   int id;
02537 
02538   if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
02539     error (_("\"info spu\" is only supported on the SPU architecture."));
02540 
02541   id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
02542 
02543   xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
02544   len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
02545                      buf, 0, 24 + 8 * 32);
02546   if (len <= 0)
02547     error (_("Could not read proxydma_info."));
02548 
02549   dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
02550   dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
02551   dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
02552   
02553   chain = make_cleanup_ui_out_tuple_begin_end (current_uiout,
02554                                                "SPUInfoProxyDMA");
02555 
02556   if (ui_out_is_mi_like_p (current_uiout))
02557     {
02558       ui_out_field_fmt (current_uiout, "proxydma_info_type", "0x%s",
02559                         phex_nz (dma_info_type, 4));
02560       ui_out_field_fmt (current_uiout, "proxydma_info_mask", "0x%s",
02561                         phex_nz (dma_info_mask, 4));
02562       ui_out_field_fmt (current_uiout, "proxydma_info_status", "0x%s",
02563                         phex_nz (dma_info_status, 4));
02564     }
02565   else
02566     {
02567       const char *query_msg;
02568 
02569       switch (dma_info_type & 3)
02570         {
02571         case 0: query_msg = _("no query pending"); break;
02572         case 1: query_msg = _("'any' query pending"); break;
02573         case 2: query_msg = _("'all' query pending"); break;
02574         default: query_msg = _("undefined query type"); break;
02575         }
02576 
02577       printf_filtered (_("Tag-Group Status  0x%s\n"),
02578                        phex (dma_info_status, 4));
02579       printf_filtered (_("Tag-Group Mask    0x%s (%s)\n"),
02580                        phex (dma_info_mask, 4), query_msg);
02581       printf_filtered ("\n");
02582     }
02583 
02584   info_spu_dma_cmdlist (buf + 24, 8, byte_order);
02585   do_cleanups (chain);
02586 }
02587 
02588 static void
02589 info_spu_command (char *args, int from_tty)
02590 {
02591   printf_unfiltered (_("\"info spu\" must be followed by "
02592                        "the name of an SPU facility.\n"));
02593   help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
02594 }
02595 
02596 
02597 /* Root of all "set spu "/"show spu " commands.  */
02598 
02599 static void
02600 show_spu_command (char *args, int from_tty)
02601 {
02602   help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
02603 }
02604 
02605 static void
02606 set_spu_command (char *args, int from_tty)
02607 {
02608   help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
02609 }
02610 
02611 static void
02612 show_spu_stop_on_load (struct ui_file *file, int from_tty,
02613                        struct cmd_list_element *c, const char *value)
02614 {
02615   fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
02616                     value);
02617 }
02618 
02619 static void
02620 show_spu_auto_flush_cache (struct ui_file *file, int from_tty,
02621                            struct cmd_list_element *c, const char *value)
02622 {
02623   fprintf_filtered (file, _("Automatic software-cache flush is %s.\n"),
02624                     value);
02625 }
02626 
02627 
02628 /* Set up gdbarch struct.  */
02629 
02630 static struct gdbarch *
02631 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
02632 {
02633   struct gdbarch *gdbarch;
02634   struct gdbarch_tdep *tdep;
02635   int id = -1;
02636 
02637   /* Which spufs ID was requested as address space?  */
02638   if (info.tdep_info)
02639     id = *(int *)info.tdep_info;
02640   /* For objfile architectures of SPU solibs, decode the ID from the name.
02641      This assumes the filename convention employed by solib-spu.c.  */
02642   else if (info.abfd)
02643     {
02644       char *name = strrchr (info.abfd->filename, '@');
02645       if (name)
02646         sscanf (name, "@0x%*x <%d>", &id);
02647     }
02648 
02649   /* Find a candidate among extant architectures.  */
02650   for (arches = gdbarch_list_lookup_by_info (arches, &info);
02651        arches != NULL;
02652        arches = gdbarch_list_lookup_by_info (arches->next, &info))
02653     {
02654       tdep = gdbarch_tdep (arches->gdbarch);
02655       if (tdep && tdep->id == id)
02656         return arches->gdbarch;
02657     }
02658 
02659   /* None found, so create a new architecture.  */
02660   tdep = XCALLOC (1, struct gdbarch_tdep);
02661   tdep->id = id;
02662   gdbarch = gdbarch_alloc (&info, tdep);
02663 
02664   /* Disassembler.  */
02665   set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
02666 
02667   /* Registers.  */
02668   set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
02669   set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
02670   set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
02671   set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
02672   set_gdbarch_read_pc (gdbarch, spu_read_pc);
02673   set_gdbarch_write_pc (gdbarch, spu_write_pc);
02674   set_gdbarch_register_name (gdbarch, spu_register_name);
02675   set_gdbarch_register_type (gdbarch, spu_register_type);
02676   set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
02677   set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
02678   set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
02679   set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
02680 
02681   /* Data types.  */
02682   set_gdbarch_char_signed (gdbarch, 0);
02683   set_gdbarch_ptr_bit (gdbarch, 32);
02684   set_gdbarch_addr_bit (gdbarch, 32);
02685   set_gdbarch_short_bit (gdbarch, 16);
02686   set_gdbarch_int_bit (gdbarch, 32);
02687   set_gdbarch_long_bit (gdbarch, 32);
02688   set_gdbarch_long_long_bit (gdbarch, 64);
02689   set_gdbarch_float_bit (gdbarch, 32);
02690   set_gdbarch_double_bit (gdbarch, 64);
02691   set_gdbarch_long_double_bit (gdbarch, 64);
02692   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
02693   set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
02694   set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
02695 
02696   /* Address handling.  */
02697   set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
02698   set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
02699   set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
02700   set_gdbarch_address_class_type_flags (gdbarch, spu_address_class_type_flags);
02701   set_gdbarch_address_class_type_flags_to_name
02702     (gdbarch, spu_address_class_type_flags_to_name);
02703   set_gdbarch_address_class_name_to_type_flags
02704     (gdbarch, spu_address_class_name_to_type_flags);
02705 
02706 
02707   /* Inferior function calls.  */
02708   set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
02709   set_gdbarch_frame_align (gdbarch, spu_frame_align);
02710   set_gdbarch_frame_red_zone_size (gdbarch, 2000);
02711   set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
02712   set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
02713   set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
02714   set_gdbarch_return_value (gdbarch, spu_return_value);
02715 
02716   /* Frame handling.  */
02717   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
02718   frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
02719   frame_base_set_default (gdbarch, &spu_frame_base);
02720   set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
02721   set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
02722   set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
02723   set_gdbarch_frame_args_skip (gdbarch, 0);
02724   set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
02725   set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
02726 
02727   /* Cell/B.E. cross-architecture unwinder support.  */
02728   frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
02729 
02730   /* Breakpoints.  */
02731   set_gdbarch_decr_pc_after_break (gdbarch, 4);
02732   set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
02733   set_gdbarch_memory_remove_breakpoint (gdbarch, spu_memory_remove_breakpoint);
02734   set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
02735   set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
02736   set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
02737 
02738   /* Overlays.  */
02739   set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
02740 
02741   return gdbarch;
02742 }
02743 
02744 /* Provide a prototype to silence -Wmissing-prototypes.  */
02745 extern initialize_file_ftype _initialize_spu_tdep;
02746 
02747 void
02748 _initialize_spu_tdep (void)
02749 {
02750   register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
02751 
02752   /* Add ourselves to objfile event chain.  */
02753   observer_attach_new_objfile (spu_overlay_new_objfile);
02754   spu_overlay_data = register_objfile_data ();
02755 
02756   /* Install spu stop-on-load handler.  */
02757   observer_attach_new_objfile (spu_catch_start);
02758 
02759   /* Add ourselves to normal_stop event chain.  */
02760   observer_attach_normal_stop (spu_attach_normal_stop);
02761 
02762   /* Add root prefix command for all "set spu"/"show spu" commands.  */
02763   add_prefix_cmd ("spu", no_class, set_spu_command,
02764                   _("Various SPU specific commands."),
02765                   &setspucmdlist, "set spu ", 0, &setlist);
02766   add_prefix_cmd ("spu", no_class, show_spu_command,
02767                   _("Various SPU specific commands."),
02768                   &showspucmdlist, "show spu ", 0, &showlist);
02769 
02770   /* Toggle whether or not to add a temporary breakpoint at the "main"
02771      function of new SPE contexts.  */
02772   add_setshow_boolean_cmd ("stop-on-load", class_support,
02773                           &spu_stop_on_load_p, _("\
02774 Set whether to stop for new SPE threads."),
02775                            _("\
02776 Show whether to stop for new SPE threads."),
02777                            _("\
02778 Use \"on\" to give control to the user when a new SPE thread\n\
02779 enters its \"main\" function.\n\
02780 Use \"off\" to disable stopping for new SPE threads."),
02781                           NULL,
02782                           show_spu_stop_on_load,
02783                           &setspucmdlist, &showspucmdlist);
02784 
02785   /* Toggle whether or not to automatically flush the software-managed
02786      cache whenever SPE execution stops.  */
02787   add_setshow_boolean_cmd ("auto-flush-cache", class_support,
02788                           &spu_auto_flush_cache_p, _("\
02789 Set whether to automatically flush the software-managed cache."),
02790                            _("\
02791 Show whether to automatically flush the software-managed cache."),
02792                            _("\
02793 Use \"on\" to automatically flush the software-managed cache\n\
02794 whenever SPE execution stops.\n\
02795 Use \"off\" to never automatically flush the software-managed cache."),
02796                           NULL,
02797                           show_spu_auto_flush_cache,
02798                           &setspucmdlist, &showspucmdlist);
02799 
02800   /* Add root prefix command for all "info spu" commands.  */
02801   add_prefix_cmd ("spu", class_info, info_spu_command,
02802                   _("Various SPU specific commands."),
02803                   &infospucmdlist, "info spu ", 0, &infolist);
02804 
02805   /* Add various "info spu" commands.  */
02806   add_cmd ("event", class_info, info_spu_event_command,
02807            _("Display SPU event facility status.\n"),
02808            &infospucmdlist);
02809   add_cmd ("signal", class_info, info_spu_signal_command,
02810            _("Display SPU signal notification facility status.\n"),
02811            &infospucmdlist);
02812   add_cmd ("mailbox", class_info, info_spu_mailbox_command,
02813            _("Display SPU mailbox facility status.\n"),
02814            &infospucmdlist);
02815   add_cmd ("dma", class_info, info_spu_dma_command,
02816            _("Display MFC DMA status.\n"),
02817            &infospucmdlist);
02818   add_cmd ("proxydma", class_info, info_spu_proxydma_command,
02819            _("Display MFC Proxy-DMA status.\n"),
02820            &infospucmdlist);
02821 }
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Defines