GDB (API)
|
00001 /* Target-dependent code for Renesas Super-H, for GDB. 00002 00003 Copyright (C) 1993-2013 Free Software Foundation, Inc. 00004 00005 This file is part of GDB. 00006 00007 This program is free software; you can redistribute it and/or modify 00008 it under the terms of the GNU General Public License as published by 00009 the Free Software Foundation; either version 3 of the License, or 00010 (at your option) any later version. 00011 00012 This program is distributed in the hope that it will be useful, 00013 but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 GNU General Public License for more details. 00016 00017 You should have received a copy of the GNU General Public License 00018 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 00019 00020 /* Contributed by Steve Chamberlain 00021 sac@cygnus.com. */ 00022 00023 #include "defs.h" 00024 #include "frame.h" 00025 #include "frame-base.h" 00026 #include "frame-unwind.h" 00027 #include "dwarf2-frame.h" 00028 #include "symtab.h" 00029 #include "gdbtypes.h" 00030 #include "gdbcmd.h" 00031 #include "gdbcore.h" 00032 #include "value.h" 00033 #include "dis-asm.h" 00034 #include "inferior.h" 00035 #include "gdb_string.h" 00036 #include "gdb_assert.h" 00037 #include "arch-utils.h" 00038 #include "regcache.h" 00039 #include "osabi.h" 00040 #include "valprint.h" 00041 00042 #include "elf-bfd.h" 00043 00044 /* sh flags */ 00045 #include "elf/sh.h" 00046 /* Register numbers shared with the simulator. */ 00047 #include "gdb/sim-sh.h" 00048 #include "language.h" 00049 #include "sh64-tdep.h" 00050 00051 /* Information that is dependent on the processor variant. */ 00052 enum sh_abi 00053 { 00054 SH_ABI_UNKNOWN, 00055 SH_ABI_32, 00056 SH_ABI_64 00057 }; 00058 00059 struct gdbarch_tdep 00060 { 00061 enum sh_abi sh_abi; 00062 }; 00063 00064 struct sh64_frame_cache 00065 { 00066 /* Base address. */ 00067 CORE_ADDR base; 00068 LONGEST sp_offset; 00069 CORE_ADDR pc; 00070 00071 /* Flag showing that a frame has been created in the prologue code. */ 00072 int uses_fp; 00073 00074 int media_mode; 00075 00076 /* Saved registers. */ 00077 CORE_ADDR saved_regs[SIM_SH64_NR_REGS]; 00078 CORE_ADDR saved_sp; 00079 }; 00080 00081 /* Registers of SH5 */ 00082 enum 00083 { 00084 R0_REGNUM = 0, 00085 DEFAULT_RETURN_REGNUM = 2, 00086 STRUCT_RETURN_REGNUM = 2, 00087 ARG0_REGNUM = 2, 00088 ARGLAST_REGNUM = 9, 00089 FLOAT_ARGLAST_REGNUM = 11, 00090 MEDIA_FP_REGNUM = 14, 00091 PR_REGNUM = 18, 00092 SR_REGNUM = 65, 00093 DR0_REGNUM = 141, 00094 DR_LAST_REGNUM = 172, 00095 /* FPP stands for Floating Point Pair, to avoid confusion with 00096 GDB's gdbarch_fp0_regnum, which is the number of the first Floating 00097 point register. Unfortunately on the sh5, the floating point 00098 registers are called FR, and the floating point pairs are called FP. */ 00099 FPP0_REGNUM = 173, 00100 FPP_LAST_REGNUM = 204, 00101 FV0_REGNUM = 205, 00102 FV_LAST_REGNUM = 220, 00103 R0_C_REGNUM = 221, 00104 R_LAST_C_REGNUM = 236, 00105 PC_C_REGNUM = 237, 00106 GBR_C_REGNUM = 238, 00107 MACH_C_REGNUM = 239, 00108 MACL_C_REGNUM = 240, 00109 PR_C_REGNUM = 241, 00110 T_C_REGNUM = 242, 00111 FPSCR_C_REGNUM = 243, 00112 FPUL_C_REGNUM = 244, 00113 FP0_C_REGNUM = 245, 00114 FP_LAST_C_REGNUM = 260, 00115 DR0_C_REGNUM = 261, 00116 DR_LAST_C_REGNUM = 268, 00117 FV0_C_REGNUM = 269, 00118 FV_LAST_C_REGNUM = 272, 00119 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM, 00120 SSR_REGNUM = SIM_SH64_SSR_REGNUM, 00121 SPC_REGNUM = SIM_SH64_SPC_REGNUM, 00122 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7, 00123 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1 00124 }; 00125 00126 static const char * 00127 sh64_register_name (struct gdbarch *gdbarch, int reg_nr) 00128 { 00129 static char *register_names[] = 00130 { 00131 /* SH MEDIA MODE (ISA 32) */ 00132 /* general registers (64-bit) 0-63 */ 00133 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 00134 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 00135 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 00136 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", 00137 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", 00138 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", 00139 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", 00140 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", 00141 00142 /* pc (64-bit) 64 */ 00143 "pc", 00144 00145 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */ 00146 "sr", "ssr", "spc", 00147 00148 /* target registers (64-bit) 68-75 */ 00149 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", 00150 00151 /* floating point state control register (32-bit) 76 */ 00152 "fpscr", 00153 00154 /* single precision floating point registers (32-bit) 77-140 */ 00155 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", 00156 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", 00157 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", 00158 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", 00159 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", 00160 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", 00161 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", 00162 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", 00163 00164 /* double precision registers (pseudo) 141-172 */ 00165 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", 00166 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30", 00167 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46", 00168 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62", 00169 00170 /* floating point pairs (pseudo) 173-204 */ 00171 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14", 00172 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30", 00173 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46", 00174 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62", 00175 00176 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */ 00177 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28", 00178 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60", 00179 00180 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */ 00181 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c", 00182 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c", 00183 "pc_c", 00184 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c", 00185 "fpscr_c", "fpul_c", 00186 "fr0_c", "fr1_c", "fr2_c", "fr3_c", 00187 "fr4_c", "fr5_c", "fr6_c", "fr7_c", 00188 "fr8_c", "fr9_c", "fr10_c", "fr11_c", 00189 "fr12_c", "fr13_c", "fr14_c", "fr15_c", 00190 "dr0_c", "dr2_c", "dr4_c", "dr6_c", 00191 "dr8_c", "dr10_c", "dr12_c", "dr14_c", 00192 "fv0_c", "fv4_c", "fv8_c", "fv12_c", 00193 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */ 00194 }; 00195 00196 if (reg_nr < 0) 00197 return NULL; 00198 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names))) 00199 return NULL; 00200 return register_names[reg_nr]; 00201 } 00202 00203 #define NUM_PSEUDO_REGS_SH_MEDIA 80 00204 #define NUM_PSEUDO_REGS_SH_COMPACT 51 00205 00206 /* Macros and functions for setting and testing a bit in a minimal 00207 symbol that marks it as 32-bit function. The MSB of the minimal 00208 symbol's "info" field is used for this purpose. 00209 00210 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special", 00211 i.e. refers to a 32-bit function, and sets a "special" bit in a 00212 minimal symbol to mark it as a 32-bit function 00213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */ 00214 00215 #define MSYMBOL_IS_SPECIAL(msym) \ 00216 MSYMBOL_TARGET_FLAG_1 (msym) 00217 00218 static void 00219 sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym) 00220 { 00221 if (msym == NULL) 00222 return; 00223 00224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32) 00225 { 00226 MSYMBOL_TARGET_FLAG_1 (msym) = 1; 00227 SYMBOL_VALUE_ADDRESS (msym) |= 1; 00228 } 00229 } 00230 00231 /* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here 00232 are some macros to test, set, or clear bit 0 of addresses. */ 00233 #define IS_ISA32_ADDR(addr) ((addr) & 1) 00234 #define MAKE_ISA32_ADDR(addr) ((addr) | 1) 00235 #define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1) 00236 00237 static int 00238 pc_is_isa32 (bfd_vma memaddr) 00239 { 00240 struct bound_minimal_symbol sym; 00241 00242 /* If bit 0 of the address is set, assume this is a 00243 ISA32 (shmedia) address. */ 00244 if (IS_ISA32_ADDR (memaddr)) 00245 return 1; 00246 00247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in 00248 the high bit of the info field. Use this to decide if the function is 00249 ISA16 or ISA32. */ 00250 sym = lookup_minimal_symbol_by_pc (memaddr); 00251 if (sym.minsym) 00252 return MSYMBOL_IS_SPECIAL (sym.minsym); 00253 else 00254 return 0; 00255 } 00256 00257 static const unsigned char * 00258 sh64_breakpoint_from_pc (struct gdbarch *gdbarch, 00259 CORE_ADDR *pcptr, int *lenptr) 00260 { 00261 /* The BRK instruction for shmedia is 00262 01101111 11110101 11111111 11110000 00263 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0 00264 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */ 00265 00266 /* The BRK instruction for shcompact is 00267 00000000 00111011 00268 which translates in big endian mode to 0x0, 0x3b 00269 and in little endian mode to 0x3b, 0x0 */ 00270 00271 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 00272 { 00273 if (pc_is_isa32 (*pcptr)) 00274 { 00275 static unsigned char big_breakpoint_media[] = { 00276 0x6f, 0xf5, 0xff, 0xf0 00277 }; 00278 *pcptr = UNMAKE_ISA32_ADDR (*pcptr); 00279 *lenptr = sizeof (big_breakpoint_media); 00280 return big_breakpoint_media; 00281 } 00282 else 00283 { 00284 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b}; 00285 *lenptr = sizeof (big_breakpoint_compact); 00286 return big_breakpoint_compact; 00287 } 00288 } 00289 else 00290 { 00291 if (pc_is_isa32 (*pcptr)) 00292 { 00293 static unsigned char little_breakpoint_media[] = { 00294 0xf0, 0xff, 0xf5, 0x6f 00295 }; 00296 *pcptr = UNMAKE_ISA32_ADDR (*pcptr); 00297 *lenptr = sizeof (little_breakpoint_media); 00298 return little_breakpoint_media; 00299 } 00300 else 00301 { 00302 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0}; 00303 *lenptr = sizeof (little_breakpoint_compact); 00304 return little_breakpoint_compact; 00305 } 00306 } 00307 } 00308 00309 /* Prologue looks like 00310 [mov.l <regs>,@-r15]... 00311 [sts.l pr,@-r15] 00312 [mov.l r14,@-r15] 00313 [mov r15,r14] 00314 00315 Actually it can be more complicated than this. For instance, with 00316 newer gcc's: 00317 00318 mov.l r14,@-r15 00319 add #-12,r15 00320 mov r15,r14 00321 mov r4,r1 00322 mov r5,r2 00323 mov.l r6,@(4,r14) 00324 mov.l r7,@(8,r14) 00325 mov.b r1,@r14 00326 mov r14,r1 00327 mov r14,r1 00328 add #2,r1 00329 mov.w r2,@r1 00330 00331 */ 00332 00333 /* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000 00334 with l=1 and n = 18 0110101111110001010010100aaa0000 */ 00335 #define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00) 00336 00337 /* STS.L PR,@-r0 0100000000100010 00338 r0-4-->r0, PR-->(r0) */ 00339 #define IS_STS_R0(x) ((x) == 0x4022) 00340 00341 /* STS PR, Rm 0000mmmm00101010 00342 PR-->Rm */ 00343 #define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a) 00344 00345 /* MOV.L Rm,@(disp,r15) 00011111mmmmdddd 00346 Rm-->(dispx4+r15) */ 00347 #define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00) 00348 00349 /* MOV.L R14,@(disp,r15) 000111111110dddd 00350 R14-->(dispx4+r15) */ 00351 #define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0) 00352 00353 /* ST.Q R14, disp, R18 101011001110dddddddddd0100100000 00354 R18-->(dispx8+R14) */ 00355 #define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120) 00356 00357 /* ST.Q R15, disp, R18 101011001111dddddddddd0100100000 00358 R18-->(dispx8+R15) */ 00359 #define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120) 00360 00361 /* ST.L R15, disp, R18 101010001111dddddddddd0100100000 00362 R18-->(dispx4+R15) */ 00363 #define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120) 00364 00365 /* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000 00366 R14-->(dispx8+R15) */ 00367 #define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0) 00368 00369 /* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000 00370 R14-->(dispx4+R15) */ 00371 #define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0) 00372 00373 /* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000 00374 R15 + imm --> R15 */ 00375 #define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0) 00376 00377 /* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000 00378 R15 + imm --> R15 */ 00379 #define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0) 00380 00381 /* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000 00382 R15 + R63 --> R14 */ 00383 #define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0) 00384 00385 /* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000 00386 R15 + R63 --> R14 */ 00387 #define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0) 00388 00389 #define IS_MOV_SP_FP_MEDIA(x) \ 00390 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x)) 00391 00392 /* MOV #imm, R0 1110 0000 ssss ssss 00393 #imm-->R0 */ 00394 #define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000) 00395 00396 /* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */ 00397 #define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000) 00398 00399 /* ADD r15,r0 0011 0000 1111 1100 00400 r15+r0-->r0 */ 00401 #define IS_ADD_SP_R0(x) ((x) == 0x30fc) 00402 00403 /* MOV.L R14 @-R0 0010 0000 1110 0110 00404 R14-->(R0-4), R0-4-->R0 */ 00405 #define IS_MOV_R14_R0(x) ((x) == 0x20e6) 00406 00407 /* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000 00408 where Rm is one of r2-r9 which are the argument registers. */ 00409 /* FIXME: Recognize the float and double register moves too! */ 00410 #define IS_MEDIA_IND_ARG_MOV(x) \ 00411 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \ 00412 && (((x) & 0x03f00000) >= 0x00200000 \ 00413 && ((x) & 0x03f00000) <= 0x00900000)) 00414 00415 /* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000 00416 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000 00417 where Rm is one of r2-r9 which are the argument registers. */ 00418 #define IS_MEDIA_ARG_MOV(x) \ 00419 (((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \ 00420 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090)) 00421 00422 /* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */ 00423 /* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */ 00424 /* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */ 00425 /* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */ 00426 /* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */ 00427 #define IS_MEDIA_MOV_TO_R14(x) \ 00428 ((((x) & 0xfffffc0f) == 0xa0e00000) \ 00429 || (((x) & 0xfffffc0f) == 0xa4e00000) \ 00430 || (((x) & 0xfffffc0f) == 0xa8e00000) \ 00431 || (((x) & 0xfffffc0f) == 0xb4e00000) \ 00432 || (((x) & 0xfffffc0f) == 0xbce00000)) 00433 00434 /* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011 00435 where Rm is r2-r9 */ 00436 #define IS_COMPACT_IND_ARG_MOV(x) \ 00437 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \ 00438 && (((x) & 0x00f0) <= 0x0090)) 00439 00440 /* compact direct arg move! 00441 MOV.L Rn, @r14 0010 1110 mmmm 0010 */ 00442 #define IS_COMPACT_ARG_MOV(x) \ 00443 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \ 00444 && ((x) & 0x00f0) <= 0x0090)) 00445 00446 /* MOV.B Rm, @R14 0010 1110 mmmm 0000 00447 MOV.W Rm, @R14 0010 1110 mmmm 0001 */ 00448 #define IS_COMPACT_MOV_TO_R14(x) \ 00449 ((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01)) 00450 00451 #define IS_JSR_R0(x) ((x) == 0x400b) 00452 #define IS_NOP(x) ((x) == 0x0009) 00453 00454 00455 /* MOV r15,r14 0110111011110011 00456 r15-->r14 */ 00457 #define IS_MOV_SP_FP(x) ((x) == 0x6ef3) 00458 00459 /* ADD #imm,r15 01111111iiiiiiii 00460 r15+imm-->r15 */ 00461 #define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00) 00462 00463 /* Skip any prologue before the guts of a function. */ 00464 00465 /* Skip the prologue using the debug information. If this fails we'll 00466 fall back on the 'guess' method below. */ 00467 static CORE_ADDR 00468 after_prologue (CORE_ADDR pc) 00469 { 00470 struct symtab_and_line sal; 00471 CORE_ADDR func_addr, func_end; 00472 00473 /* If we can not find the symbol in the partial symbol table, then 00474 there is no hope we can determine the function's start address 00475 with this code. */ 00476 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 00477 return 0; 00478 00479 00480 /* Get the line associated with FUNC_ADDR. */ 00481 sal = find_pc_line (func_addr, 0); 00482 00483 /* There are only two cases to consider. First, the end of the source line 00484 is within the function bounds. In that case we return the end of the 00485 source line. Second is the end of the source line extends beyond the 00486 bounds of the current function. We need to use the slow code to 00487 examine instructions in that case. */ 00488 if (sal.end < func_end) 00489 return sal.end; 00490 else 00491 return 0; 00492 } 00493 00494 static CORE_ADDR 00495 look_for_args_moves (struct gdbarch *gdbarch, 00496 CORE_ADDR start_pc, int media_mode) 00497 { 00498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00499 CORE_ADDR here, end; 00500 int w; 00501 int insn_size = (media_mode ? 4 : 2); 00502 00503 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;) 00504 { 00505 if (media_mode) 00506 { 00507 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), 00508 insn_size, byte_order); 00509 here += insn_size; 00510 if (IS_MEDIA_IND_ARG_MOV (w)) 00511 { 00512 /* This must be followed by a store to r14, so the argument 00513 is where the debug info says it is. This can happen after 00514 the SP has been saved, unfortunately. */ 00515 00516 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here), 00517 insn_size, byte_order); 00518 here += insn_size; 00519 if (IS_MEDIA_MOV_TO_R14 (next_insn)) 00520 start_pc = here; 00521 } 00522 else if (IS_MEDIA_ARG_MOV (w)) 00523 { 00524 /* These instructions store directly the argument in r14. */ 00525 start_pc = here; 00526 } 00527 else 00528 break; 00529 } 00530 else 00531 { 00532 w = read_memory_integer (here, insn_size, byte_order); 00533 w = w & 0xffff; 00534 here += insn_size; 00535 if (IS_COMPACT_IND_ARG_MOV (w)) 00536 { 00537 /* This must be followed by a store to r14, so the argument 00538 is where the debug info says it is. This can happen after 00539 the SP has been saved, unfortunately. */ 00540 00541 int next_insn = 0xffff & read_memory_integer (here, insn_size, 00542 byte_order); 00543 here += insn_size; 00544 if (IS_COMPACT_MOV_TO_R14 (next_insn)) 00545 start_pc = here; 00546 } 00547 else if (IS_COMPACT_ARG_MOV (w)) 00548 { 00549 /* These instructions store directly the argument in r14. */ 00550 start_pc = here; 00551 } 00552 else if (IS_MOVL_R0 (w)) 00553 { 00554 /* There is a function that gcc calls to get the arguments 00555 passed correctly to the function. Only after this 00556 function call the arguments will be found at the place 00557 where they are supposed to be. This happens in case the 00558 argument has to be stored into a 64-bit register (for 00559 instance doubles, long longs). SHcompact doesn't have 00560 access to the full 64-bits, so we store the register in 00561 stack slot and store the address of the stack slot in 00562 the register, then do a call through a wrapper that 00563 loads the memory value into the register. A SHcompact 00564 callee calls an argument decoder 00565 (GCC_shcompact_incoming_args) that stores the 64-bit 00566 value in a stack slot and stores the address of the 00567 stack slot in the register. GCC thinks the argument is 00568 just passed by transparent reference, but this is only 00569 true after the argument decoder is called. Such a call 00570 needs to be considered part of the prologue. */ 00571 00572 /* This must be followed by a JSR @r0 instruction and by 00573 a NOP instruction. After these, the prologue is over! */ 00574 00575 int next_insn = 0xffff & read_memory_integer (here, insn_size, 00576 byte_order); 00577 here += insn_size; 00578 if (IS_JSR_R0 (next_insn)) 00579 { 00580 next_insn = 0xffff & read_memory_integer (here, insn_size, 00581 byte_order); 00582 here += insn_size; 00583 00584 if (IS_NOP (next_insn)) 00585 start_pc = here; 00586 } 00587 } 00588 else 00589 break; 00590 } 00591 } 00592 00593 return start_pc; 00594 } 00595 00596 static CORE_ADDR 00597 sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc) 00598 { 00599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00600 CORE_ADDR here, end; 00601 int updated_fp = 0; 00602 int insn_size = 4; 00603 int media_mode = 1; 00604 00605 if (!start_pc) 00606 return 0; 00607 00608 if (pc_is_isa32 (start_pc) == 0) 00609 { 00610 insn_size = 2; 00611 media_mode = 0; 00612 } 00613 00614 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;) 00615 { 00616 00617 if (media_mode) 00618 { 00619 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), 00620 insn_size, byte_order); 00621 here += insn_size; 00622 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w) 00623 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w) 00624 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) 00625 || IS_PTABSL_R18 (w)) 00626 { 00627 start_pc = here; 00628 } 00629 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w)) 00630 { 00631 start_pc = here; 00632 updated_fp = 1; 00633 } 00634 else 00635 if (updated_fp) 00636 { 00637 /* Don't bail out yet, we may have arguments stored in 00638 registers here, according to the debug info, so that 00639 gdb can print the frames correctly. */ 00640 start_pc = look_for_args_moves (gdbarch, 00641 here - insn_size, media_mode); 00642 break; 00643 } 00644 } 00645 else 00646 { 00647 int w = 0xffff & read_memory_integer (here, insn_size, byte_order); 00648 here += insn_size; 00649 00650 if (IS_STS_R0 (w) || IS_STS_PR (w) 00651 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w) 00652 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w)) 00653 { 00654 start_pc = here; 00655 } 00656 else if (IS_MOV_SP_FP (w)) 00657 { 00658 start_pc = here; 00659 updated_fp = 1; 00660 } 00661 else 00662 if (updated_fp) 00663 { 00664 /* Don't bail out yet, we may have arguments stored in 00665 registers here, according to the debug info, so that 00666 gdb can print the frames correctly. */ 00667 start_pc = look_for_args_moves (gdbarch, 00668 here - insn_size, media_mode); 00669 break; 00670 } 00671 } 00672 } 00673 00674 return start_pc; 00675 } 00676 00677 static CORE_ADDR 00678 sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 00679 { 00680 CORE_ADDR post_prologue_pc; 00681 00682 /* See if we can determine the end of the prologue via the symbol table. 00683 If so, then return either PC, or the PC after the prologue, whichever 00684 is greater. */ 00685 post_prologue_pc = after_prologue (pc); 00686 00687 /* If after_prologue returned a useful address, then use it. Else 00688 fall back on the instruction skipping code. */ 00689 if (post_prologue_pc != 0) 00690 return max (pc, post_prologue_pc); 00691 else 00692 return sh64_skip_prologue_hard_way (gdbarch, pc); 00693 } 00694 00695 /* Should call_function allocate stack space for a struct return? */ 00696 static int 00697 sh64_use_struct_convention (struct type *type) 00698 { 00699 return (TYPE_LENGTH (type) > 8); 00700 } 00701 00702 /* For vectors of 4 floating point registers. */ 00703 static int 00704 sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum) 00705 { 00706 int fp_regnum; 00707 00708 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4; 00709 return fp_regnum; 00710 } 00711 00712 /* For double precision floating point registers, i.e 2 fp regs. */ 00713 static int 00714 sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum) 00715 { 00716 int fp_regnum; 00717 00718 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2; 00719 return fp_regnum; 00720 } 00721 00722 /* For pairs of floating point registers. */ 00723 static int 00724 sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum) 00725 { 00726 int fp_regnum; 00727 00728 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2; 00729 return fp_regnum; 00730 } 00731 00732 /* *INDENT-OFF* */ 00733 /* 00734 SH COMPACT MODE (ISA 16) (all pseudo) 221-272 00735 GDB_REGNUM BASE_REGNUM 00736 r0_c 221 0 00737 r1_c 222 1 00738 r2_c 223 2 00739 r3_c 224 3 00740 r4_c 225 4 00741 r5_c 226 5 00742 r6_c 227 6 00743 r7_c 228 7 00744 r8_c 229 8 00745 r9_c 230 9 00746 r10_c 231 10 00747 r11_c 232 11 00748 r12_c 233 12 00749 r13_c 234 13 00750 r14_c 235 14 00751 r15_c 236 15 00752 00753 pc_c 237 64 00754 gbr_c 238 16 00755 mach_c 239 17 00756 macl_c 240 17 00757 pr_c 241 18 00758 t_c 242 19 00759 fpscr_c 243 76 00760 fpul_c 244 109 00761 00762 fr0_c 245 77 00763 fr1_c 246 78 00764 fr2_c 247 79 00765 fr3_c 248 80 00766 fr4_c 249 81 00767 fr5_c 250 82 00768 fr6_c 251 83 00769 fr7_c 252 84 00770 fr8_c 253 85 00771 fr9_c 254 86 00772 fr10_c 255 87 00773 fr11_c 256 88 00774 fr12_c 257 89 00775 fr13_c 258 90 00776 fr14_c 259 91 00777 fr15_c 260 92 00778 00779 dr0_c 261 77 00780 dr2_c 262 79 00781 dr4_c 263 81 00782 dr6_c 264 83 00783 dr8_c 265 85 00784 dr10_c 266 87 00785 dr12_c 267 89 00786 dr14_c 268 91 00787 00788 fv0_c 269 77 00789 fv4_c 270 81 00790 fv8_c 271 85 00791 fv12_c 272 91 00792 */ 00793 /* *INDENT-ON* */ 00794 static int 00795 sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr) 00796 { 00797 int base_regnum = reg_nr; 00798 00799 /* general register N maps to general register N */ 00800 if (reg_nr >= R0_C_REGNUM 00801 && reg_nr <= R_LAST_C_REGNUM) 00802 base_regnum = reg_nr - R0_C_REGNUM; 00803 00804 /* floating point register N maps to floating point register N */ 00805 else if (reg_nr >= FP0_C_REGNUM 00806 && reg_nr <= FP_LAST_C_REGNUM) 00807 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch); 00808 00809 /* double prec register N maps to base regnum for double prec register N */ 00810 else if (reg_nr >= DR0_C_REGNUM 00811 && reg_nr <= DR_LAST_C_REGNUM) 00812 base_regnum = sh64_dr_reg_base_num (gdbarch, 00813 DR0_REGNUM + reg_nr - DR0_C_REGNUM); 00814 00815 /* vector N maps to base regnum for vector register N */ 00816 else if (reg_nr >= FV0_C_REGNUM 00817 && reg_nr <= FV_LAST_C_REGNUM) 00818 base_regnum = sh64_fv_reg_base_num (gdbarch, 00819 FV0_REGNUM + reg_nr - FV0_C_REGNUM); 00820 00821 else if (reg_nr == PC_C_REGNUM) 00822 base_regnum = gdbarch_pc_regnum (gdbarch); 00823 00824 else if (reg_nr == GBR_C_REGNUM) 00825 base_regnum = 16; 00826 00827 else if (reg_nr == MACH_C_REGNUM 00828 || reg_nr == MACL_C_REGNUM) 00829 base_regnum = 17; 00830 00831 else if (reg_nr == PR_C_REGNUM) 00832 base_regnum = PR_REGNUM; 00833 00834 else if (reg_nr == T_C_REGNUM) 00835 base_regnum = 19; 00836 00837 else if (reg_nr == FPSCR_C_REGNUM) 00838 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */ 00839 00840 else if (reg_nr == FPUL_C_REGNUM) 00841 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32; 00842 00843 return base_regnum; 00844 } 00845 00846 static int 00847 sign_extend (int value, int bits) 00848 { 00849 value = value & ((1 << bits) - 1); 00850 return (value & (1 << (bits - 1)) 00851 ? value | (~((1 << bits) - 1)) 00852 : value); 00853 } 00854 00855 static void 00856 sh64_analyze_prologue (struct gdbarch *gdbarch, 00857 struct sh64_frame_cache *cache, 00858 CORE_ADDR func_pc, 00859 CORE_ADDR current_pc) 00860 { 00861 int pc; 00862 int opc; 00863 int insn; 00864 int r0_val = 0; 00865 int insn_size; 00866 int gdb_register_number; 00867 int register_number; 00868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 00869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00870 00871 cache->sp_offset = 0; 00872 00873 /* Loop around examining the prologue insns until we find something 00874 that does not appear to be part of the prologue. But give up 00875 after 20 of them, since we're getting silly then. */ 00876 00877 pc = func_pc; 00878 00879 if (cache->media_mode) 00880 insn_size = 4; 00881 else 00882 insn_size = 2; 00883 00884 opc = pc + (insn_size * 28); 00885 if (opc > current_pc) 00886 opc = current_pc; 00887 for ( ; pc <= opc; pc += insn_size) 00888 { 00889 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc) 00890 : pc, 00891 insn_size, byte_order); 00892 00893 if (!cache->media_mode) 00894 { 00895 if (IS_STS_PR (insn)) 00896 { 00897 int next_insn = read_memory_integer (pc + insn_size, 00898 insn_size, byte_order); 00899 if (IS_MOV_TO_R15 (next_insn)) 00900 { 00901 cache->saved_regs[PR_REGNUM] 00902 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) 00903 - 0x8) << 2); 00904 pc += insn_size; 00905 } 00906 } 00907 00908 else if (IS_MOV_R14 (insn)) 00909 cache->saved_regs[MEDIA_FP_REGNUM] = 00910 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2); 00911 00912 else if (IS_MOV_R0 (insn)) 00913 { 00914 /* Put in R0 the offset from SP at which to store some 00915 registers. We are interested in this value, because it 00916 will tell us where the given registers are stored within 00917 the frame. */ 00918 r0_val = ((insn & 0xff) ^ 0x80) - 0x80; 00919 } 00920 00921 else if (IS_ADD_SP_R0 (insn)) 00922 { 00923 /* This instruction still prepares r0, but we don't care. 00924 We already have the offset in r0_val. */ 00925 } 00926 00927 else if (IS_STS_R0 (insn)) 00928 { 00929 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */ 00930 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4); 00931 r0_val -= 4; 00932 } 00933 00934 else if (IS_MOV_R14_R0 (insn)) 00935 { 00936 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */ 00937 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset 00938 - (r0_val - 4); 00939 r0_val -= 4; 00940 } 00941 00942 else if (IS_ADD_SP (insn)) 00943 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80; 00944 00945 else if (IS_MOV_SP_FP (insn)) 00946 break; 00947 } 00948 else 00949 { 00950 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn)) 00951 cache->sp_offset -= 00952 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9); 00953 00954 else if (IS_STQ_R18_R15 (insn)) 00955 cache->saved_regs[PR_REGNUM] 00956 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 00957 9) << 3); 00958 00959 else if (IS_STL_R18_R15 (insn)) 00960 cache->saved_regs[PR_REGNUM] 00961 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 00962 9) << 2); 00963 00964 else if (IS_STQ_R14_R15 (insn)) 00965 cache->saved_regs[MEDIA_FP_REGNUM] 00966 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 00967 9) << 3); 00968 00969 else if (IS_STL_R14_R15 (insn)) 00970 cache->saved_regs[MEDIA_FP_REGNUM] 00971 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 00972 9) << 2); 00973 00974 else if (IS_MOV_SP_FP_MEDIA (insn)) 00975 break; 00976 } 00977 } 00978 00979 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0) 00980 cache->uses_fp = 1; 00981 } 00982 00983 static CORE_ADDR 00984 sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp) 00985 { 00986 return sp & ~7; 00987 } 00988 00989 /* Function: push_dummy_call 00990 Setup the function arguments for calling a function in the inferior. 00991 00992 On the Renesas SH architecture, there are four registers (R4 to R7) 00993 which are dedicated for passing function arguments. Up to the first 00994 four arguments (depending on size) may go into these registers. 00995 The rest go on the stack. 00996 00997 Arguments that are smaller than 4 bytes will still take up a whole 00998 register or a whole 32-bit word on the stack, and will be 00999 right-justified in the register or the stack word. This includes 01000 chars, shorts, and small aggregate types. 01001 01002 Arguments that are larger than 4 bytes may be split between two or 01003 more registers. If there are not enough registers free, an argument 01004 may be passed partly in a register (or registers), and partly on the 01005 stack. This includes doubles, long longs, and larger aggregates. 01006 As far as I know, there is no upper limit to the size of aggregates 01007 that will be passed in this way; in other words, the convention of 01008 passing a pointer to a large aggregate instead of a copy is not used. 01009 01010 An exceptional case exists for struct arguments (and possibly other 01011 aggregates such as arrays) if the size is larger than 4 bytes but 01012 not a multiple of 4 bytes. In this case the argument is never split 01013 between the registers and the stack, but instead is copied in its 01014 entirety onto the stack, AND also copied into as many registers as 01015 there is room for. In other words, space in registers permitting, 01016 two copies of the same argument are passed in. As far as I can tell, 01017 only the one on the stack is used, although that may be a function 01018 of the level of compiler optimization. I suspect this is a compiler 01019 bug. Arguments of these odd sizes are left-justified within the 01020 word (as opposed to arguments smaller than 4 bytes, which are 01021 right-justified). 01022 01023 If the function is to return an aggregate type such as a struct, it 01024 is either returned in the normal return value register R0 (if its 01025 size is no greater than one byte), or else the caller must allocate 01026 space into which the callee will copy the return value (if the size 01027 is greater than one byte). In this case, a pointer to the return 01028 value location is passed into the callee in register R2, which does 01029 not displace any of the other arguments passed in via registers R4 01030 to R7. */ 01031 01032 /* R2-R9 for integer types and integer equivalent (char, pointers) and 01033 non-scalar (struct, union) elements (even if the elements are 01034 floats). 01035 FR0-FR11 for single precision floating point (float) 01036 DR0-DR10 for double precision floating point (double) 01037 01038 If a float is argument number 3 (for instance) and arguments number 01039 1,2, and 4 are integer, the mapping will be: 01040 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used. 01041 01042 If a float is argument number 10 (for instance) and arguments number 01043 1 through 10 are integer, the mapping will be: 01044 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8, 01045 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, 01046 arg11->stack(16,SP). I.e. there is hole in the stack. 01047 01048 Different rules apply for variable arguments functions, and for functions 01049 for which the prototype is not known. */ 01050 01051 static CORE_ADDR 01052 sh64_push_dummy_call (struct gdbarch *gdbarch, 01053 struct value *function, 01054 struct regcache *regcache, 01055 CORE_ADDR bp_addr, 01056 int nargs, struct value **args, 01057 CORE_ADDR sp, int struct_return, 01058 CORE_ADDR struct_addr) 01059 { 01060 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 01061 int stack_offset, stack_alloc; 01062 int int_argreg; 01063 int float_argreg; 01064 int double_argreg; 01065 int float_arg_index = 0; 01066 int double_arg_index = 0; 01067 int argnum; 01068 struct type *type; 01069 CORE_ADDR regval; 01070 const gdb_byte *val; 01071 gdb_byte valbuf[8]; 01072 int len; 01073 int argreg_size; 01074 int fp_args[12]; 01075 01076 memset (fp_args, 0, sizeof (fp_args)); 01077 01078 /* First force sp to a 8-byte alignment. */ 01079 sp = sh64_frame_align (gdbarch, sp); 01080 01081 /* The "struct return pointer" pseudo-argument has its own dedicated 01082 register. */ 01083 01084 if (struct_return) 01085 regcache_cooked_write_unsigned (regcache, 01086 STRUCT_RETURN_REGNUM, struct_addr); 01087 01088 /* Now make sure there's space on the stack. */ 01089 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) 01090 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7); 01091 sp -= stack_alloc; /* Make room on stack for args. */ 01092 01093 /* Now load as many as possible of the first arguments into 01094 registers, and push the rest onto the stack. There are 64 bytes 01095 in eight registers available. Loop thru args from first to last. */ 01096 01097 int_argreg = ARG0_REGNUM; 01098 float_argreg = gdbarch_fp0_regnum (gdbarch); 01099 double_argreg = DR0_REGNUM; 01100 01101 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) 01102 { 01103 type = value_type (args[argnum]); 01104 len = TYPE_LENGTH (type); 01105 memset (valbuf, 0, sizeof (valbuf)); 01106 01107 if (TYPE_CODE (type) != TYPE_CODE_FLT) 01108 { 01109 argreg_size = register_size (gdbarch, int_argreg); 01110 01111 if (len < argreg_size) 01112 { 01113 /* value gets right-justified in the register or stack word. */ 01114 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 01115 memcpy (valbuf + argreg_size - len, 01116 value_contents (args[argnum]), len); 01117 else 01118 memcpy (valbuf, value_contents (args[argnum]), len); 01119 01120 val = valbuf; 01121 } 01122 else 01123 val = value_contents (args[argnum]); 01124 01125 while (len > 0) 01126 { 01127 if (int_argreg > ARGLAST_REGNUM) 01128 { 01129 /* Must go on the stack. */ 01130 write_memory (sp + stack_offset, val, argreg_size); 01131 stack_offset += 8;/*argreg_size;*/ 01132 } 01133 /* NOTE WELL!!!!! This is not an "else if" clause!!! 01134 That's because some *&^%$ things get passed on the stack 01135 AND in the registers! */ 01136 if (int_argreg <= ARGLAST_REGNUM) 01137 { 01138 /* There's room in a register. */ 01139 regval = extract_unsigned_integer (val, argreg_size, 01140 byte_order); 01141 regcache_cooked_write_unsigned (regcache, 01142 int_argreg, regval); 01143 } 01144 /* Store the value 8 bytes at a time. This means that 01145 things larger than 8 bytes may go partly in registers 01146 and partly on the stack. FIXME: argreg is incremented 01147 before we use its size. */ 01148 len -= argreg_size; 01149 val += argreg_size; 01150 int_argreg++; 01151 } 01152 } 01153 else 01154 { 01155 val = value_contents (args[argnum]); 01156 if (len == 4) 01157 { 01158 /* Where is it going to be stored? */ 01159 while (fp_args[float_arg_index]) 01160 float_arg_index ++; 01161 01162 /* Now float_argreg points to the register where it 01163 should be stored. Are we still within the allowed 01164 register set? */ 01165 if (float_arg_index <= FLOAT_ARGLAST_REGNUM) 01166 { 01167 /* Goes in FR0...FR11 */ 01168 regcache_cooked_write (regcache, 01169 gdbarch_fp0_regnum (gdbarch) 01170 + float_arg_index, 01171 val); 01172 fp_args[float_arg_index] = 1; 01173 /* Skip the corresponding general argument register. */ 01174 int_argreg ++; 01175 } 01176 else 01177 { 01178 /* Store it as the integers, 8 bytes at the time, if 01179 necessary spilling on the stack. */ 01180 } 01181 } 01182 else if (len == 8) 01183 { 01184 /* Where is it going to be stored? */ 01185 while (fp_args[double_arg_index]) 01186 double_arg_index += 2; 01187 /* Now double_argreg points to the register 01188 where it should be stored. 01189 Are we still within the allowed register set? */ 01190 if (double_arg_index < FLOAT_ARGLAST_REGNUM) 01191 { 01192 /* Goes in DR0...DR10 */ 01193 /* The numbering of the DRi registers is consecutive, 01194 i.e. includes odd numbers. */ 01195 int double_register_offset = double_arg_index / 2; 01196 int regnum = DR0_REGNUM + double_register_offset; 01197 regcache_cooked_write (regcache, regnum, val); 01198 fp_args[double_arg_index] = 1; 01199 fp_args[double_arg_index + 1] = 1; 01200 /* Skip the corresponding general argument register. */ 01201 int_argreg ++; 01202 } 01203 else 01204 { 01205 /* Store it as the integers, 8 bytes at the time, if 01206 necessary spilling on the stack. */ 01207 } 01208 } 01209 } 01210 } 01211 /* Store return address. */ 01212 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr); 01213 01214 /* Update stack pointer. */ 01215 regcache_cooked_write_unsigned (regcache, 01216 gdbarch_sp_regnum (gdbarch), sp); 01217 01218 return sp; 01219 } 01220 01221 /* Find a function's return value in the appropriate registers (in 01222 regbuf), and copy it into valbuf. Extract from an array REGBUF 01223 containing the (raw) register state a function return value of type 01224 TYPE, and copy that, in virtual format, into VALBUF. */ 01225 static void 01226 sh64_extract_return_value (struct type *type, struct regcache *regcache, 01227 void *valbuf) 01228 { 01229 struct gdbarch *gdbarch = get_regcache_arch (regcache); 01230 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 01231 int len = TYPE_LENGTH (type); 01232 01233 if (TYPE_CODE (type) == TYPE_CODE_FLT) 01234 { 01235 if (len == 4) 01236 { 01237 /* Return value stored in gdbarch_fp0_regnum. */ 01238 regcache_raw_read (regcache, 01239 gdbarch_fp0_regnum (gdbarch), valbuf); 01240 } 01241 else if (len == 8) 01242 { 01243 /* return value stored in DR0_REGNUM. */ 01244 DOUBLEST val; 01245 gdb_byte buf[8]; 01246 01247 regcache_cooked_read (regcache, DR0_REGNUM, buf); 01248 01249 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) 01250 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, 01251 buf, &val); 01252 else 01253 floatformat_to_doublest (&floatformat_ieee_double_big, 01254 buf, &val); 01255 store_typed_floating (valbuf, type, val); 01256 } 01257 } 01258 else 01259 { 01260 if (len <= 8) 01261 { 01262 int offset; 01263 gdb_byte buf[8]; 01264 /* Result is in register 2. If smaller than 8 bytes, it is padded 01265 at the most significant end. */ 01266 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf); 01267 01268 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 01269 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM) 01270 - len; 01271 else 01272 offset = 0; 01273 memcpy (valbuf, buf + offset, len); 01274 } 01275 else 01276 error (_("bad size for return value")); 01277 } 01278 } 01279 01280 /* Write into appropriate registers a function return value 01281 of type TYPE, given in virtual format. 01282 If the architecture is sh4 or sh3e, store a function's return value 01283 in the R0 general register or in the FP0 floating point register, 01284 depending on the type of the return value. In all the other cases 01285 the result is stored in r0, left-justified. */ 01286 01287 static void 01288 sh64_store_return_value (struct type *type, struct regcache *regcache, 01289 const gdb_byte *valbuf) 01290 { 01291 struct gdbarch *gdbarch = get_regcache_arch (regcache); 01292 gdb_byte buf[64]; /* more than enough... */ 01293 int len = TYPE_LENGTH (type); 01294 01295 if (TYPE_CODE (type) == TYPE_CODE_FLT) 01296 { 01297 int i, regnum = gdbarch_fp0_regnum (gdbarch); 01298 for (i = 0; i < len; i += 4) 01299 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) 01300 regcache_raw_write (regcache, regnum++, 01301 valbuf + len - 4 - i); 01302 else 01303 regcache_raw_write (regcache, regnum++, valbuf + i); 01304 } 01305 else 01306 { 01307 int return_register = DEFAULT_RETURN_REGNUM; 01308 int offset = 0; 01309 01310 if (len <= register_size (gdbarch, return_register)) 01311 { 01312 /* Pad with zeros. */ 01313 memset (buf, 0, register_size (gdbarch, return_register)); 01314 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) 01315 offset = 0; /*register_size (gdbarch, 01316 return_register) - len;*/ 01317 else 01318 offset = register_size (gdbarch, return_register) - len; 01319 01320 memcpy (buf + offset, valbuf, len); 01321 regcache_raw_write (regcache, return_register, buf); 01322 } 01323 else 01324 regcache_raw_write (regcache, return_register, valbuf); 01325 } 01326 } 01327 01328 static enum return_value_convention 01329 sh64_return_value (struct gdbarch *gdbarch, struct value *function, 01330 struct type *type, struct regcache *regcache, 01331 gdb_byte *readbuf, const gdb_byte *writebuf) 01332 { 01333 if (sh64_use_struct_convention (type)) 01334 return RETURN_VALUE_STRUCT_CONVENTION; 01335 if (writebuf) 01336 sh64_store_return_value (type, regcache, writebuf); 01337 else if (readbuf) 01338 sh64_extract_return_value (type, regcache, readbuf); 01339 return RETURN_VALUE_REGISTER_CONVENTION; 01340 } 01341 01342 /* *INDENT-OFF* */ 01343 /* 01344 SH MEDIA MODE (ISA 32) 01345 general registers (64-bit) 0-63 01346 0 r0, r1, r2, r3, r4, r5, r6, r7, 01347 64 r8, r9, r10, r11, r12, r13, r14, r15, 01348 128 r16, r17, r18, r19, r20, r21, r22, r23, 01349 192 r24, r25, r26, r27, r28, r29, r30, r31, 01350 256 r32, r33, r34, r35, r36, r37, r38, r39, 01351 320 r40, r41, r42, r43, r44, r45, r46, r47, 01352 384 r48, r49, r50, r51, r52, r53, r54, r55, 01353 448 r56, r57, r58, r59, r60, r61, r62, r63, 01354 01355 pc (64-bit) 64 01356 512 pc, 01357 01358 status reg., saved status reg., saved pc reg. (64-bit) 65-67 01359 520 sr, ssr, spc, 01360 01361 target registers (64-bit) 68-75 01362 544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7, 01363 01364 floating point state control register (32-bit) 76 01365 608 fpscr, 01366 01367 single precision floating point registers (32-bit) 77-140 01368 612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7, 01369 644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15, 01370 676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23, 01371 708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31, 01372 740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39, 01373 772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47, 01374 804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55, 01375 836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63, 01376 01377 TOTAL SPACE FOR REGISTERS: 868 bytes 01378 01379 From here on they are all pseudo registers: no memory allocated. 01380 REGISTER_BYTE returns the register byte for the base register. 01381 01382 double precision registers (pseudo) 141-172 01383 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14, 01384 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30, 01385 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46, 01386 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62, 01387 01388 floating point pairs (pseudo) 173-204 01389 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14, 01390 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30, 01391 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46, 01392 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62, 01393 01394 floating point vectors (4 floating point regs) (pseudo) 205-220 01395 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28, 01396 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60, 01397 01398 SH COMPACT MODE (ISA 16) (all pseudo) 221-272 01399 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c, 01400 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c, 01401 pc_c, 01402 gbr_c, mach_c, macl_c, pr_c, t_c, 01403 fpscr_c, fpul_c, 01404 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c, 01405 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c 01406 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c 01407 fv0_c, fv4_c, fv8_c, fv12_c 01408 */ 01409 01410 static struct type * 01411 sh64_build_float_register_type (struct gdbarch *gdbarch, int high) 01412 { 01413 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float, 01414 0, high); 01415 } 01416 01417 /* Return the GDB type object for the "standard" data type 01418 of data in register REG_NR. */ 01419 static struct type * 01420 sh64_register_type (struct gdbarch *gdbarch, int reg_nr) 01421 { 01422 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch) 01423 && reg_nr <= FP_LAST_REGNUM) 01424 || (reg_nr >= FP0_C_REGNUM 01425 && reg_nr <= FP_LAST_C_REGNUM)) 01426 return builtin_type (gdbarch)->builtin_float; 01427 else if ((reg_nr >= DR0_REGNUM 01428 && reg_nr <= DR_LAST_REGNUM) 01429 || (reg_nr >= DR0_C_REGNUM 01430 && reg_nr <= DR_LAST_C_REGNUM)) 01431 return builtin_type (gdbarch)->builtin_double; 01432 else if (reg_nr >= FPP0_REGNUM 01433 && reg_nr <= FPP_LAST_REGNUM) 01434 return sh64_build_float_register_type (gdbarch, 1); 01435 else if ((reg_nr >= FV0_REGNUM 01436 && reg_nr <= FV_LAST_REGNUM) 01437 ||(reg_nr >= FV0_C_REGNUM 01438 && reg_nr <= FV_LAST_C_REGNUM)) 01439 return sh64_build_float_register_type (gdbarch, 3); 01440 else if (reg_nr == FPSCR_REGNUM) 01441 return builtin_type (gdbarch)->builtin_int; 01442 else if (reg_nr >= R0_C_REGNUM 01443 && reg_nr < FP0_C_REGNUM) 01444 return builtin_type (gdbarch)->builtin_int; 01445 else 01446 return builtin_type (gdbarch)->builtin_long_long; 01447 } 01448 01449 static void 01450 sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum, 01451 struct type *type, gdb_byte *from, gdb_byte *to) 01452 { 01453 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE) 01454 { 01455 /* It is a no-op. */ 01456 memcpy (to, from, register_size (gdbarch, regnum)); 01457 return; 01458 } 01459 01460 if ((regnum >= DR0_REGNUM 01461 && regnum <= DR_LAST_REGNUM) 01462 || (regnum >= DR0_C_REGNUM 01463 && regnum <= DR_LAST_C_REGNUM)) 01464 { 01465 DOUBLEST val; 01466 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, 01467 from, &val); 01468 store_typed_floating (to, type, val); 01469 } 01470 else 01471 error (_("sh64_register_convert_to_virtual " 01472 "called with non DR register number")); 01473 } 01474 01475 static void 01476 sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type, 01477 int regnum, const void *from, void *to) 01478 { 01479 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE) 01480 { 01481 /* It is a no-op. */ 01482 memcpy (to, from, register_size (gdbarch, regnum)); 01483 return; 01484 } 01485 01486 if ((regnum >= DR0_REGNUM 01487 && regnum <= DR_LAST_REGNUM) 01488 || (regnum >= DR0_C_REGNUM 01489 && regnum <= DR_LAST_C_REGNUM)) 01490 { 01491 DOUBLEST val = extract_typed_floating (from, type); 01492 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, 01493 &val, to); 01494 } 01495 else 01496 error (_("sh64_register_convert_to_raw called " 01497 "with non DR register number")); 01498 } 01499 01500 /* Concatenate PORTIONS contiguous raw registers starting at 01501 BASE_REGNUM into BUFFER. */ 01502 01503 static enum register_status 01504 pseudo_register_read_portions (struct gdbarch *gdbarch, 01505 struct regcache *regcache, 01506 int portions, 01507 int base_regnum, gdb_byte *buffer) 01508 { 01509 int portion; 01510 01511 for (portion = 0; portion < portions; portion++) 01512 { 01513 enum register_status status; 01514 gdb_byte *b; 01515 01516 b = buffer + register_size (gdbarch, base_regnum) * portion; 01517 status = regcache_raw_read (regcache, base_regnum + portion, b); 01518 if (status != REG_VALID) 01519 return status; 01520 } 01521 01522 return REG_VALID; 01523 } 01524 01525 static enum register_status 01526 sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, 01527 int reg_nr, gdb_byte *buffer) 01528 { 01529 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 01530 int base_regnum; 01531 int offset = 0; 01532 gdb_byte temp_buffer[MAX_REGISTER_SIZE]; 01533 enum register_status status; 01534 01535 if (reg_nr >= DR0_REGNUM 01536 && reg_nr <= DR_LAST_REGNUM) 01537 { 01538 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr); 01539 01540 /* Build the value in the provided buffer. */ 01541 /* DR regs are double precision registers obtained by 01542 concatenating 2 single precision floating point registers. */ 01543 status = pseudo_register_read_portions (gdbarch, regcache, 01544 2, base_regnum, temp_buffer); 01545 if (status == REG_VALID) 01546 { 01547 /* We must pay attention to the endianness. */ 01548 sh64_register_convert_to_virtual (gdbarch, reg_nr, 01549 register_type (gdbarch, reg_nr), 01550 temp_buffer, buffer); 01551 } 01552 01553 return status; 01554 } 01555 01556 else if (reg_nr >= FPP0_REGNUM 01557 && reg_nr <= FPP_LAST_REGNUM) 01558 { 01559 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr); 01560 01561 /* Build the value in the provided buffer. */ 01562 /* FPP regs are pairs of single precision registers obtained by 01563 concatenating 2 single precision floating point registers. */ 01564 return pseudo_register_read_portions (gdbarch, regcache, 01565 2, base_regnum, buffer); 01566 } 01567 01568 else if (reg_nr >= FV0_REGNUM 01569 && reg_nr <= FV_LAST_REGNUM) 01570 { 01571 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr); 01572 01573 /* Build the value in the provided buffer. */ 01574 /* FV regs are vectors of single precision registers obtained by 01575 concatenating 4 single precision floating point registers. */ 01576 return pseudo_register_read_portions (gdbarch, regcache, 01577 4, base_regnum, buffer); 01578 } 01579 01580 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */ 01581 else if (reg_nr >= R0_C_REGNUM 01582 && reg_nr <= T_C_REGNUM) 01583 { 01584 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr); 01585 01586 /* Build the value in the provided buffer. */ 01587 status = regcache_raw_read (regcache, base_regnum, temp_buffer); 01588 if (status != REG_VALID) 01589 return status; 01590 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 01591 offset = 4; 01592 memcpy (buffer, 01593 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */ 01594 return REG_VALID; 01595 } 01596 01597 else if (reg_nr >= FP0_C_REGNUM 01598 && reg_nr <= FP_LAST_C_REGNUM) 01599 { 01600 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr); 01601 01602 /* Build the value in the provided buffer. */ 01603 /* Floating point registers map 1-1 to the media fp regs, 01604 they have the same size and endianness. */ 01605 return regcache_raw_read (regcache, base_regnum, buffer); 01606 } 01607 01608 else if (reg_nr >= DR0_C_REGNUM 01609 && reg_nr <= DR_LAST_C_REGNUM) 01610 { 01611 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr); 01612 01613 /* DR_C regs are double precision registers obtained by 01614 concatenating 2 single precision floating point registers. */ 01615 status = pseudo_register_read_portions (gdbarch, regcache, 01616 2, base_regnum, temp_buffer); 01617 if (status == REG_VALID) 01618 { 01619 /* We must pay attention to the endianness. */ 01620 sh64_register_convert_to_virtual (gdbarch, reg_nr, 01621 register_type (gdbarch, reg_nr), 01622 temp_buffer, buffer); 01623 } 01624 return status; 01625 } 01626 01627 else if (reg_nr >= FV0_C_REGNUM 01628 && reg_nr <= FV_LAST_C_REGNUM) 01629 { 01630 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr); 01631 01632 /* Build the value in the provided buffer. */ 01633 /* FV_C regs are vectors of single precision registers obtained by 01634 concatenating 4 single precision floating point registers. */ 01635 return pseudo_register_read_portions (gdbarch, regcache, 01636 4, base_regnum, buffer); 01637 } 01638 01639 else if (reg_nr == FPSCR_C_REGNUM) 01640 { 01641 int fpscr_base_regnum; 01642 int sr_base_regnum; 01643 unsigned int fpscr_value; 01644 unsigned int sr_value; 01645 unsigned int fpscr_c_value; 01646 unsigned int fpscr_c_part1_value; 01647 unsigned int fpscr_c_part2_value; 01648 01649 fpscr_base_regnum = FPSCR_REGNUM; 01650 sr_base_regnum = SR_REGNUM; 01651 01652 /* Build the value in the provided buffer. */ 01653 /* FPSCR_C is a very weird register that contains sparse bits 01654 from the FPSCR and the SR architectural registers. 01655 Specifically: */ 01656 /* *INDENT-OFF* */ 01657 /* 01658 FPSRC_C bit 01659 0 Bit 0 of FPSCR 01660 1 reserved 01661 2-17 Bit 2-18 of FPSCR 01662 18-20 Bits 12,13,14 of SR 01663 21-31 reserved 01664 */ 01665 /* *INDENT-ON* */ 01666 /* Get FPSCR into a local buffer. */ 01667 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer); 01668 if (status != REG_VALID) 01669 return status; 01670 /* Get value as an int. */ 01671 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order); 01672 /* Get SR into a local buffer */ 01673 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer); 01674 if (status != REG_VALID) 01675 return status; 01676 /* Get value as an int. */ 01677 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order); 01678 /* Build the new value. */ 01679 fpscr_c_part1_value = fpscr_value & 0x3fffd; 01680 fpscr_c_part2_value = (sr_value & 0x7000) << 6; 01681 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value; 01682 /* Store that in out buffer!!! */ 01683 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value); 01684 /* FIXME There is surely an endianness gotcha here. */ 01685 01686 return REG_VALID; 01687 } 01688 01689 else if (reg_nr == FPUL_C_REGNUM) 01690 { 01691 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr); 01692 01693 /* FPUL_C register is floating point register 32, 01694 same size, same endianness. */ 01695 return regcache_raw_read (regcache, base_regnum, buffer); 01696 } 01697 else 01698 gdb_assert_not_reached ("invalid pseudo register number"); 01699 } 01700 01701 static void 01702 sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, 01703 int reg_nr, const gdb_byte *buffer) 01704 { 01705 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 01706 int base_regnum, portion; 01707 int offset; 01708 gdb_byte temp_buffer[MAX_REGISTER_SIZE]; 01709 01710 if (reg_nr >= DR0_REGNUM 01711 && reg_nr <= DR_LAST_REGNUM) 01712 { 01713 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr); 01714 /* We must pay attention to the endianness. */ 01715 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr), 01716 reg_nr, 01717 buffer, temp_buffer); 01718 01719 /* Write the real regs for which this one is an alias. */ 01720 for (portion = 0; portion < 2; portion++) 01721 regcache_raw_write (regcache, base_regnum + portion, 01722 (temp_buffer 01723 + register_size (gdbarch, 01724 base_regnum) * portion)); 01725 } 01726 01727 else if (reg_nr >= FPP0_REGNUM 01728 && reg_nr <= FPP_LAST_REGNUM) 01729 { 01730 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr); 01731 01732 /* Write the real regs for which this one is an alias. */ 01733 for (portion = 0; portion < 2; portion++) 01734 regcache_raw_write (regcache, base_regnum + portion, 01735 (buffer + register_size (gdbarch, 01736 base_regnum) * portion)); 01737 } 01738 01739 else if (reg_nr >= FV0_REGNUM 01740 && reg_nr <= FV_LAST_REGNUM) 01741 { 01742 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr); 01743 01744 /* Write the real regs for which this one is an alias. */ 01745 for (portion = 0; portion < 4; portion++) 01746 regcache_raw_write (regcache, base_regnum + portion, 01747 (buffer + register_size (gdbarch, 01748 base_regnum) * portion)); 01749 } 01750 01751 /* sh compact general pseudo registers. 1-to-1 with a shmedia 01752 register but only 4 bytes of it. */ 01753 else if (reg_nr >= R0_C_REGNUM 01754 && reg_nr <= T_C_REGNUM) 01755 { 01756 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr); 01757 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */ 01758 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 01759 offset = 4; 01760 else 01761 offset = 0; 01762 /* Let's read the value of the base register into a temporary 01763 buffer, so that overwriting the last four bytes with the new 01764 value of the pseudo will leave the upper 4 bytes unchanged. */ 01765 regcache_raw_read (regcache, base_regnum, temp_buffer); 01766 /* Write as an 8 byte quantity. */ 01767 memcpy (temp_buffer + offset, buffer, 4); 01768 regcache_raw_write (regcache, base_regnum, temp_buffer); 01769 } 01770 01771 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia 01772 registers. Both are 4 bytes. */ 01773 else if (reg_nr >= FP0_C_REGNUM 01774 && reg_nr <= FP_LAST_C_REGNUM) 01775 { 01776 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr); 01777 regcache_raw_write (regcache, base_regnum, buffer); 01778 } 01779 01780 else if (reg_nr >= DR0_C_REGNUM 01781 && reg_nr <= DR_LAST_C_REGNUM) 01782 { 01783 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr); 01784 for (portion = 0; portion < 2; portion++) 01785 { 01786 /* We must pay attention to the endianness. */ 01787 sh64_register_convert_to_raw (gdbarch, 01788 register_type (gdbarch, reg_nr), 01789 reg_nr, 01790 buffer, temp_buffer); 01791 01792 regcache_raw_write (regcache, base_regnum + portion, 01793 (temp_buffer 01794 + register_size (gdbarch, 01795 base_regnum) * portion)); 01796 } 01797 } 01798 01799 else if (reg_nr >= FV0_C_REGNUM 01800 && reg_nr <= FV_LAST_C_REGNUM) 01801 { 01802 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr); 01803 01804 for (portion = 0; portion < 4; portion++) 01805 { 01806 regcache_raw_write (regcache, base_regnum + portion, 01807 (buffer 01808 + register_size (gdbarch, 01809 base_regnum) * portion)); 01810 } 01811 } 01812 01813 else if (reg_nr == FPSCR_C_REGNUM) 01814 { 01815 int fpscr_base_regnum; 01816 int sr_base_regnum; 01817 unsigned int fpscr_value; 01818 unsigned int sr_value; 01819 unsigned int old_fpscr_value; 01820 unsigned int old_sr_value; 01821 unsigned int fpscr_c_value; 01822 unsigned int fpscr_mask; 01823 unsigned int sr_mask; 01824 01825 fpscr_base_regnum = FPSCR_REGNUM; 01826 sr_base_regnum = SR_REGNUM; 01827 01828 /* FPSCR_C is a very weird register that contains sparse bits 01829 from the FPSCR and the SR architectural registers. 01830 Specifically: */ 01831 /* *INDENT-OFF* */ 01832 /* 01833 FPSRC_C bit 01834 0 Bit 0 of FPSCR 01835 1 reserved 01836 2-17 Bit 2-18 of FPSCR 01837 18-20 Bits 12,13,14 of SR 01838 21-31 reserved 01839 */ 01840 /* *INDENT-ON* */ 01841 /* Get value as an int. */ 01842 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order); 01843 01844 /* Build the new values. */ 01845 fpscr_mask = 0x0003fffd; 01846 sr_mask = 0x001c0000; 01847 01848 fpscr_value = fpscr_c_value & fpscr_mask; 01849 sr_value = (fpscr_value & sr_mask) >> 6; 01850 01851 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer); 01852 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order); 01853 old_fpscr_value &= 0xfffc0002; 01854 fpscr_value |= old_fpscr_value; 01855 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value); 01856 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer); 01857 01858 regcache_raw_read (regcache, sr_base_regnum, temp_buffer); 01859 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order); 01860 old_sr_value &= 0xffff8fff; 01861 sr_value |= old_sr_value; 01862 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value); 01863 regcache_raw_write (regcache, sr_base_regnum, temp_buffer); 01864 } 01865 01866 else if (reg_nr == FPUL_C_REGNUM) 01867 { 01868 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr); 01869 regcache_raw_write (regcache, base_regnum, buffer); 01870 } 01871 } 01872 01873 /* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE 01874 shmedia REGISTERS. */ 01875 /* Control registers, compact mode. */ 01876 static void 01877 sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame, 01878 int cr_c_regnum) 01879 { 01880 switch (cr_c_regnum) 01881 { 01882 case PC_C_REGNUM: 01883 fprintf_filtered (file, "pc_c\t0x%08x\n", 01884 (int) get_frame_register_unsigned (frame, cr_c_regnum)); 01885 break; 01886 case GBR_C_REGNUM: 01887 fprintf_filtered (file, "gbr_c\t0x%08x\n", 01888 (int) get_frame_register_unsigned (frame, cr_c_regnum)); 01889 break; 01890 case MACH_C_REGNUM: 01891 fprintf_filtered (file, "mach_c\t0x%08x\n", 01892 (int) get_frame_register_unsigned (frame, cr_c_regnum)); 01893 break; 01894 case MACL_C_REGNUM: 01895 fprintf_filtered (file, "macl_c\t0x%08x\n", 01896 (int) get_frame_register_unsigned (frame, cr_c_regnum)); 01897 break; 01898 case PR_C_REGNUM: 01899 fprintf_filtered (file, "pr_c\t0x%08x\n", 01900 (int) get_frame_register_unsigned (frame, cr_c_regnum)); 01901 break; 01902 case T_C_REGNUM: 01903 fprintf_filtered (file, "t_c\t0x%08x\n", 01904 (int) get_frame_register_unsigned (frame, cr_c_regnum)); 01905 break; 01906 case FPSCR_C_REGNUM: 01907 fprintf_filtered (file, "fpscr_c\t0x%08x\n", 01908 (int) get_frame_register_unsigned (frame, cr_c_regnum)); 01909 break; 01910 case FPUL_C_REGNUM: 01911 fprintf_filtered (file, "fpul_c\t0x%08x\n", 01912 (int) get_frame_register_unsigned (frame, cr_c_regnum)); 01913 break; 01914 } 01915 } 01916 01917 static void 01918 sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file, 01919 struct frame_info *frame, int regnum) 01920 { /* Do values for FP (float) regs. */ 01921 unsigned char *raw_buffer; 01922 double flt; /* Double extracted from raw hex data. */ 01923 int inv; 01924 int j; 01925 01926 /* Allocate space for the float. */ 01927 raw_buffer = (unsigned char *) 01928 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch))); 01929 01930 /* Get the data in raw format. */ 01931 if (!deprecated_frame_register_read (frame, regnum, raw_buffer)) 01932 error (_("can't read register %d (%s)"), 01933 regnum, gdbarch_register_name (gdbarch, regnum)); 01934 01935 /* Get the register as a number. */ 01936 flt = unpack_double (builtin_type (gdbarch)->builtin_float, 01937 raw_buffer, &inv); 01938 01939 /* Print the name and some spaces. */ 01940 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file); 01941 print_spaces_filtered (15 - strlen (gdbarch_register_name 01942 (gdbarch, regnum)), file); 01943 01944 /* Print the value. */ 01945 if (inv) 01946 fprintf_filtered (file, "<invalid float>"); 01947 else 01948 fprintf_filtered (file, "%-10.9g", flt); 01949 01950 /* Print the fp register as hex. */ 01951 fprintf_filtered (file, "\t(raw "); 01952 print_hex_chars (file, raw_buffer, 01953 register_size (gdbarch, regnum), 01954 gdbarch_byte_order (gdbarch)); 01955 fprintf_filtered (file, ")"); 01956 fprintf_filtered (file, "\n"); 01957 } 01958 01959 static void 01960 sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file, 01961 struct frame_info *frame, int regnum) 01962 { 01963 /* All the sh64-compact mode registers are pseudo registers. */ 01964 01965 if (regnum < gdbarch_num_regs (gdbarch) 01966 || regnum >= gdbarch_num_regs (gdbarch) 01967 + NUM_PSEUDO_REGS_SH_MEDIA 01968 + NUM_PSEUDO_REGS_SH_COMPACT) 01969 internal_error (__FILE__, __LINE__, 01970 _("Invalid pseudo register number %d\n"), regnum); 01971 01972 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)) 01973 { 01974 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum); 01975 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM, 01976 (unsigned) get_frame_register_unsigned (frame, fp_regnum), 01977 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1)); 01978 } 01979 01980 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM)) 01981 { 01982 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum); 01983 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM, 01984 (unsigned) get_frame_register_unsigned (frame, fp_regnum), 01985 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1)); 01986 } 01987 01988 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)) 01989 { 01990 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum); 01991 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n", 01992 regnum - FV0_REGNUM, 01993 (unsigned) get_frame_register_unsigned (frame, fp_regnum), 01994 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1), 01995 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2), 01996 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3)); 01997 } 01998 01999 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM)) 02000 { 02001 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum); 02002 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n", 02003 regnum - FV0_C_REGNUM, 02004 (unsigned) get_frame_register_unsigned (frame, fp_regnum), 02005 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1), 02006 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2), 02007 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3)); 02008 } 02009 02010 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM) 02011 { 02012 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum); 02013 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM, 02014 (unsigned) get_frame_register_unsigned (frame, fp_regnum), 02015 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1)); 02016 } 02017 02018 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM) 02019 { 02020 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum); 02021 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM, 02022 (unsigned) get_frame_register_unsigned (frame, c_regnum)); 02023 } 02024 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM) 02025 /* This should work also for pseudoregs. */ 02026 sh64_do_fp_register (gdbarch, file, frame, regnum); 02027 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM) 02028 sh64_do_cr_c_register_info (file, frame, regnum); 02029 } 02030 02031 static void 02032 sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file, 02033 struct frame_info *frame, int regnum) 02034 { 02035 unsigned char raw_buffer[MAX_REGISTER_SIZE]; 02036 struct value_print_options opts; 02037 02038 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file); 02039 print_spaces_filtered (15 - strlen (gdbarch_register_name 02040 (gdbarch, regnum)), file); 02041 02042 /* Get the data in raw format. */ 02043 if (!deprecated_frame_register_read (frame, regnum, raw_buffer)) 02044 { 02045 fprintf_filtered (file, "*value not available*\n"); 02046 return; 02047 } 02048 02049 get_formatted_print_options (&opts, 'x'); 02050 opts.deref_ref = 1; 02051 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0, 02052 file, 0, NULL, &opts, current_language); 02053 fprintf_filtered (file, "\t"); 02054 get_formatted_print_options (&opts, 0); 02055 opts.deref_ref = 1; 02056 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0, 02057 file, 0, NULL, &opts, current_language); 02058 fprintf_filtered (file, "\n"); 02059 } 02060 02061 static void 02062 sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file, 02063 struct frame_info *frame, int regnum) 02064 { 02065 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch) 02066 + gdbarch_num_pseudo_regs (gdbarch)) 02067 internal_error (__FILE__, __LINE__, 02068 _("Invalid register number %d\n"), regnum); 02069 02070 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)) 02071 { 02072 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT) 02073 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */ 02074 else 02075 sh64_do_register (gdbarch, file, frame, regnum); 02076 } 02077 02078 else if (regnum < gdbarch_num_regs (gdbarch) 02079 + gdbarch_num_pseudo_regs (gdbarch)) 02080 sh64_do_pseudo_register (gdbarch, file, frame, regnum); 02081 } 02082 02083 static void 02084 sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, 02085 struct frame_info *frame, int regnum, 02086 int fpregs) 02087 { 02088 if (regnum != -1) /* Do one specified register. */ 02089 { 02090 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0') 02091 error (_("Not a valid register for the current processor type")); 02092 02093 sh64_print_register (gdbarch, file, frame, regnum); 02094 } 02095 else 02096 /* Do all (or most) registers. */ 02097 { 02098 regnum = 0; 02099 while (regnum < gdbarch_num_regs (gdbarch)) 02100 { 02101 /* If the register name is empty, it is undefined for this 02102 processor, so don't display anything. */ 02103 if (gdbarch_register_name (gdbarch, regnum) == NULL 02104 || *(gdbarch_register_name (gdbarch, regnum)) == '\0') 02105 { 02106 regnum++; 02107 continue; 02108 } 02109 02110 if (TYPE_CODE (register_type (gdbarch, regnum)) 02111 == TYPE_CODE_FLT) 02112 { 02113 if (fpregs) 02114 { 02115 /* true for "INFO ALL-REGISTERS" command. */ 02116 sh64_do_fp_register (gdbarch, file, frame, regnum); 02117 regnum ++; 02118 } 02119 else 02120 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch); 02121 /* skip FP regs */ 02122 } 02123 else 02124 { 02125 sh64_do_register (gdbarch, file, frame, regnum); 02126 regnum++; 02127 } 02128 } 02129 02130 if (fpregs) 02131 while (regnum < gdbarch_num_regs (gdbarch) 02132 + gdbarch_num_pseudo_regs (gdbarch)) 02133 { 02134 sh64_do_pseudo_register (gdbarch, file, frame, regnum); 02135 regnum++; 02136 } 02137 } 02138 } 02139 02140 static void 02141 sh64_compact_print_registers_info (struct gdbarch *gdbarch, 02142 struct ui_file *file, 02143 struct frame_info *frame, int regnum, 02144 int fpregs) 02145 { 02146 if (regnum != -1) /* Do one specified register. */ 02147 { 02148 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0') 02149 error (_("Not a valid register for the current processor type")); 02150 02151 if (regnum >= 0 && regnum < R0_C_REGNUM) 02152 error (_("Not a valid register for the current processor mode.")); 02153 02154 sh64_print_register (gdbarch, file, frame, regnum); 02155 } 02156 else 02157 /* Do all compact registers. */ 02158 { 02159 regnum = R0_C_REGNUM; 02160 while (regnum < gdbarch_num_regs (gdbarch) 02161 + gdbarch_num_pseudo_regs (gdbarch)) 02162 { 02163 sh64_do_pseudo_register (gdbarch, file, frame, regnum); 02164 regnum++; 02165 } 02166 } 02167 } 02168 02169 static void 02170 sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, 02171 struct frame_info *frame, int regnum, int fpregs) 02172 { 02173 if (pc_is_isa32 (get_frame_pc (frame))) 02174 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs); 02175 else 02176 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs); 02177 } 02178 02179 static struct sh64_frame_cache * 02180 sh64_alloc_frame_cache (void) 02181 { 02182 struct sh64_frame_cache *cache; 02183 int i; 02184 02185 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache); 02186 02187 /* Base address. */ 02188 cache->base = 0; 02189 cache->saved_sp = 0; 02190 cache->sp_offset = 0; 02191 cache->pc = 0; 02192 02193 /* Frameless until proven otherwise. */ 02194 cache->uses_fp = 0; 02195 02196 /* Saved registers. We initialize these to -1 since zero is a valid 02197 offset (that's where fp is supposed to be stored). */ 02198 for (i = 0; i < SIM_SH64_NR_REGS; i++) 02199 { 02200 cache->saved_regs[i] = -1; 02201 } 02202 02203 return cache; 02204 } 02205 02206 static struct sh64_frame_cache * 02207 sh64_frame_cache (struct frame_info *this_frame, void **this_cache) 02208 { 02209 struct gdbarch *gdbarch; 02210 struct sh64_frame_cache *cache; 02211 CORE_ADDR current_pc; 02212 int i; 02213 02214 if (*this_cache) 02215 return *this_cache; 02216 02217 gdbarch = get_frame_arch (this_frame); 02218 cache = sh64_alloc_frame_cache (); 02219 *this_cache = cache; 02220 02221 current_pc = get_frame_pc (this_frame); 02222 cache->media_mode = pc_is_isa32 (current_pc); 02223 02224 /* In principle, for normal frames, fp holds the frame pointer, 02225 which holds the base address for the current stack frame. 02226 However, for functions that don't need it, the frame pointer is 02227 optional. For these "frameless" functions the frame pointer is 02228 actually the frame pointer of the calling frame. */ 02229 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM); 02230 if (cache->base == 0) 02231 return cache; 02232 02233 cache->pc = get_frame_func (this_frame); 02234 if (cache->pc != 0) 02235 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc); 02236 02237 if (!cache->uses_fp) 02238 { 02239 /* We didn't find a valid frame, which means that CACHE->base 02240 currently holds the frame pointer for our calling frame. If 02241 we're at the start of a function, or somewhere half-way its 02242 prologue, the function's frame probably hasn't been fully 02243 setup yet. Try to reconstruct the base address for the stack 02244 frame by looking at the stack pointer. For truly "frameless" 02245 functions this might work too. */ 02246 cache->base = get_frame_register_unsigned 02247 (this_frame, gdbarch_sp_regnum (gdbarch)); 02248 } 02249 02250 /* Now that we have the base address for the stack frame we can 02251 calculate the value of sp in the calling frame. */ 02252 cache->saved_sp = cache->base + cache->sp_offset; 02253 02254 /* Adjust all the saved registers such that they contain addresses 02255 instead of offsets. */ 02256 for (i = 0; i < SIM_SH64_NR_REGS; i++) 02257 if (cache->saved_regs[i] != -1) 02258 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i]; 02259 02260 return cache; 02261 } 02262 02263 static struct value * 02264 sh64_frame_prev_register (struct frame_info *this_frame, 02265 void **this_cache, int regnum) 02266 { 02267 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache); 02268 struct gdbarch *gdbarch = get_frame_arch (this_frame); 02269 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 02270 02271 gdb_assert (regnum >= 0); 02272 02273 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp) 02274 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); 02275 02276 /* The PC of the previous frame is stored in the PR register of 02277 the current frame. Frob regnum so that we pull the value from 02278 the correct place. */ 02279 if (regnum == gdbarch_pc_regnum (gdbarch)) 02280 regnum = PR_REGNUM; 02281 02282 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1) 02283 { 02284 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32 02285 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM)) 02286 { 02287 CORE_ADDR val; 02288 val = read_memory_unsigned_integer (cache->saved_regs[regnum], 02289 4, byte_order); 02290 return frame_unwind_got_constant (this_frame, regnum, val); 02291 } 02292 02293 return frame_unwind_got_memory (this_frame, regnum, 02294 cache->saved_regs[regnum]); 02295 } 02296 02297 return frame_unwind_got_register (this_frame, regnum, regnum); 02298 } 02299 02300 static void 02301 sh64_frame_this_id (struct frame_info *this_frame, void **this_cache, 02302 struct frame_id *this_id) 02303 { 02304 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache); 02305 02306 /* This marks the outermost frame. */ 02307 if (cache->base == 0) 02308 return; 02309 02310 *this_id = frame_id_build (cache->saved_sp, cache->pc); 02311 } 02312 02313 static const struct frame_unwind sh64_frame_unwind = { 02314 NORMAL_FRAME, 02315 default_frame_unwind_stop_reason, 02316 sh64_frame_this_id, 02317 sh64_frame_prev_register, 02318 NULL, 02319 default_frame_sniffer 02320 }; 02321 02322 static CORE_ADDR 02323 sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) 02324 { 02325 return frame_unwind_register_unsigned (next_frame, 02326 gdbarch_sp_regnum (gdbarch)); 02327 } 02328 02329 static CORE_ADDR 02330 sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 02331 { 02332 return frame_unwind_register_unsigned (next_frame, 02333 gdbarch_pc_regnum (gdbarch)); 02334 } 02335 02336 static struct frame_id 02337 sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 02338 { 02339 CORE_ADDR sp = get_frame_register_unsigned (this_frame, 02340 gdbarch_sp_regnum (gdbarch)); 02341 return frame_id_build (sp, get_frame_pc (this_frame)); 02342 } 02343 02344 static CORE_ADDR 02345 sh64_frame_base_address (struct frame_info *this_frame, void **this_cache) 02346 { 02347 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache); 02348 02349 return cache->base; 02350 } 02351 02352 static const struct frame_base sh64_frame_base = { 02353 &sh64_frame_unwind, 02354 sh64_frame_base_address, 02355 sh64_frame_base_address, 02356 sh64_frame_base_address 02357 }; 02358 02359 02360 struct gdbarch * 02361 sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 02362 { 02363 struct gdbarch *gdbarch; 02364 struct gdbarch_tdep *tdep; 02365 02366 /* If there is already a candidate, use it. */ 02367 arches = gdbarch_list_lookup_by_info (arches, &info); 02368 if (arches != NULL) 02369 return arches->gdbarch; 02370 02371 /* None found, create a new architecture from the information 02372 provided. */ 02373 tdep = XMALLOC (struct gdbarch_tdep); 02374 gdbarch = gdbarch_alloc (&info, tdep); 02375 02376 /* Determine the ABI */ 02377 if (info.abfd && bfd_get_arch_size (info.abfd) == 64) 02378 { 02379 /* If the ABI is the 64-bit one, it can only be sh-media. */ 02380 tdep->sh_abi = SH_ABI_64; 02381 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT); 02382 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); 02383 } 02384 else 02385 { 02386 /* If the ABI is the 32-bit one it could be either media or 02387 compact. */ 02388 tdep->sh_abi = SH_ABI_32; 02389 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); 02390 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); 02391 } 02392 02393 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); 02394 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); 02395 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); 02396 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); 02397 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); 02398 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); 02399 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); 02400 02401 /* The number of real registers is the same whether we are in 02402 ISA16(compact) or ISA32(media). */ 02403 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS); 02404 set_gdbarch_sp_regnum (gdbarch, 15); 02405 set_gdbarch_pc_regnum (gdbarch, 64); 02406 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM); 02407 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA 02408 + NUM_PSEUDO_REGS_SH_COMPACT); 02409 02410 set_gdbarch_register_name (gdbarch, sh64_register_name); 02411 set_gdbarch_register_type (gdbarch, sh64_register_type); 02412 02413 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read); 02414 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write); 02415 02416 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc); 02417 02418 set_gdbarch_print_insn (gdbarch, print_insn_sh); 02419 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno); 02420 02421 set_gdbarch_return_value (gdbarch, sh64_return_value); 02422 02423 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue); 02424 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 02425 02426 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call); 02427 02428 set_gdbarch_believe_pcc_promotion (gdbarch, 1); 02429 02430 set_gdbarch_frame_align (gdbarch, sh64_frame_align); 02431 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp); 02432 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc); 02433 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id); 02434 frame_base_set_default (gdbarch, &sh64_frame_base); 02435 02436 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info); 02437 02438 set_gdbarch_elf_make_msymbol_special (gdbarch, 02439 sh64_elf_make_msymbol_special); 02440 02441 /* Hook in ABI-specific overrides, if they have been registered. */ 02442 gdbarch_init_osabi (info, gdbarch); 02443 02444 dwarf2_append_unwinders (gdbarch); 02445 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind); 02446 02447 return gdbarch; 02448 }