GDB (API)
|
00001 /* Cache and manage the values of registers for GDB, the GNU debugger. 00002 00003 Copyright (C) 1986-2013 Free Software Foundation, Inc. 00004 00005 This file is part of GDB. 00006 00007 This program is free software; you can redistribute it and/or modify 00008 it under the terms of the GNU General Public License as published by 00009 the Free Software Foundation; either version 3 of the License, or 00010 (at your option) any later version. 00011 00012 This program is distributed in the hope that it will be useful, 00013 but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 GNU General Public License for more details. 00016 00017 You should have received a copy of the GNU General Public License 00018 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 00019 00020 #include "defs.h" 00021 #include "inferior.h" 00022 #include "target.h" 00023 #include "gdbarch.h" 00024 #include "gdbcmd.h" 00025 #include "regcache.h" 00026 #include "reggroups.h" 00027 #include "gdb_assert.h" 00028 #include "gdb_string.h" 00029 #include "gdbcmd.h" /* For maintenanceprintlist. */ 00030 #include "observer.h" 00031 #include "exceptions.h" 00032 #include "remote.h" 00033 #include "valprint.h" 00034 00035 /* 00036 * DATA STRUCTURE 00037 * 00038 * Here is the actual register cache. 00039 */ 00040 00041 /* Per-architecture object describing the layout of a register cache. 00042 Computed once when the architecture is created. */ 00043 00044 struct gdbarch_data *regcache_descr_handle; 00045 00046 struct regcache_descr 00047 { 00048 /* The architecture this descriptor belongs to. */ 00049 struct gdbarch *gdbarch; 00050 00051 /* The raw register cache. Each raw (or hard) register is supplied 00052 by the target interface. The raw cache should not contain 00053 redundant information - if the PC is constructed from two 00054 registers then those registers and not the PC lives in the raw 00055 cache. */ 00056 int nr_raw_registers; 00057 long sizeof_raw_registers; 00058 long sizeof_raw_register_status; 00059 00060 /* The cooked register space. Each cooked register in the range 00061 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw 00062 register. The remaining [NR_RAW_REGISTERS 00063 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto 00064 both raw registers and memory by the architecture methods 00065 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */ 00066 int nr_cooked_registers; 00067 long sizeof_cooked_registers; 00068 long sizeof_cooked_register_status; 00069 00070 /* Offset and size (in 8 bit bytes), of each register in the 00071 register cache. All registers (including those in the range 00072 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an 00073 offset. */ 00074 long *register_offset; 00075 long *sizeof_register; 00076 00077 /* Cached table containing the type of each register. */ 00078 struct type **register_type; 00079 }; 00080 00081 static void * 00082 init_regcache_descr (struct gdbarch *gdbarch) 00083 { 00084 int i; 00085 struct regcache_descr *descr; 00086 gdb_assert (gdbarch != NULL); 00087 00088 /* Create an initial, zero filled, table. */ 00089 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr); 00090 descr->gdbarch = gdbarch; 00091 00092 /* Total size of the register space. The raw registers are mapped 00093 directly onto the raw register cache while the pseudo's are 00094 either mapped onto raw-registers or memory. */ 00095 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch) 00096 + gdbarch_num_pseudo_regs (gdbarch); 00097 descr->sizeof_cooked_register_status 00098 = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch); 00099 00100 /* Fill in a table of register types. */ 00101 descr->register_type 00102 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, 00103 struct type *); 00104 for (i = 0; i < descr->nr_cooked_registers; i++) 00105 descr->register_type[i] = gdbarch_register_type (gdbarch, i); 00106 00107 /* Construct a strictly RAW register cache. Don't allow pseudo's 00108 into the register cache. */ 00109 descr->nr_raw_registers = gdbarch_num_regs (gdbarch); 00110 descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch); 00111 00112 /* Lay out the register cache. 00113 00114 NOTE: cagney/2002-05-22: Only register_type() is used when 00115 constructing the register cache. It is assumed that the 00116 register's raw size, virtual size and type length are all the 00117 same. */ 00118 00119 { 00120 long offset = 0; 00121 00122 descr->sizeof_register 00123 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long); 00124 descr->register_offset 00125 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long); 00126 for (i = 0; i < descr->nr_raw_registers; i++) 00127 { 00128 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]); 00129 descr->register_offset[i] = offset; 00130 offset += descr->sizeof_register[i]; 00131 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]); 00132 } 00133 /* Set the real size of the raw register cache buffer. */ 00134 descr->sizeof_raw_registers = offset; 00135 00136 for (; i < descr->nr_cooked_registers; i++) 00137 { 00138 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]); 00139 descr->register_offset[i] = offset; 00140 offset += descr->sizeof_register[i]; 00141 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]); 00142 } 00143 /* Set the real size of the readonly register cache buffer. */ 00144 descr->sizeof_cooked_registers = offset; 00145 } 00146 00147 return descr; 00148 } 00149 00150 static struct regcache_descr * 00151 regcache_descr (struct gdbarch *gdbarch) 00152 { 00153 return gdbarch_data (gdbarch, regcache_descr_handle); 00154 } 00155 00156 /* Utility functions returning useful register attributes stored in 00157 the regcache descr. */ 00158 00159 struct type * 00160 register_type (struct gdbarch *gdbarch, int regnum) 00161 { 00162 struct regcache_descr *descr = regcache_descr (gdbarch); 00163 00164 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); 00165 return descr->register_type[regnum]; 00166 } 00167 00168 /* Utility functions returning useful register attributes stored in 00169 the regcache descr. */ 00170 00171 int 00172 register_size (struct gdbarch *gdbarch, int regnum) 00173 { 00174 struct regcache_descr *descr = regcache_descr (gdbarch); 00175 int size; 00176 00177 gdb_assert (regnum >= 0 00178 && regnum < (gdbarch_num_regs (gdbarch) 00179 + gdbarch_num_pseudo_regs (gdbarch))); 00180 size = descr->sizeof_register[regnum]; 00181 return size; 00182 } 00183 00184 /* The register cache for storing raw register values. */ 00185 00186 struct regcache 00187 { 00188 struct regcache_descr *descr; 00189 00190 /* The address space of this register cache (for registers where it 00191 makes sense, like PC or SP). */ 00192 struct address_space *aspace; 00193 00194 /* The register buffers. A read-only register cache can hold the 00195 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write 00196 register cache can only hold [0 .. gdbarch_num_regs). */ 00197 gdb_byte *registers; 00198 /* Register cache status. */ 00199 signed char *register_status; 00200 /* Is this a read-only cache? A read-only cache is used for saving 00201 the target's register state (e.g, across an inferior function 00202 call or just before forcing a function return). A read-only 00203 cache can only be updated via the methods regcache_dup() and 00204 regcache_cpy(). The actual contents are determined by the 00205 reggroup_save and reggroup_restore methods. */ 00206 int readonly_p; 00207 /* If this is a read-write cache, which thread's registers is 00208 it connected to? */ 00209 ptid_t ptid; 00210 }; 00211 00212 static struct regcache * 00213 regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace, 00214 int readonly_p) 00215 { 00216 struct regcache_descr *descr; 00217 struct regcache *regcache; 00218 00219 gdb_assert (gdbarch != NULL); 00220 descr = regcache_descr (gdbarch); 00221 regcache = XMALLOC (struct regcache); 00222 regcache->descr = descr; 00223 regcache->readonly_p = readonly_p; 00224 if (readonly_p) 00225 { 00226 regcache->registers 00227 = XCALLOC (descr->sizeof_cooked_registers, gdb_byte); 00228 regcache->register_status 00229 = XCALLOC (descr->sizeof_cooked_register_status, signed char); 00230 } 00231 else 00232 { 00233 regcache->registers 00234 = XCALLOC (descr->sizeof_raw_registers, gdb_byte); 00235 regcache->register_status 00236 = XCALLOC (descr->sizeof_raw_register_status, signed char); 00237 } 00238 regcache->aspace = aspace; 00239 regcache->ptid = minus_one_ptid; 00240 return regcache; 00241 } 00242 00243 struct regcache * 00244 regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace) 00245 { 00246 return regcache_xmalloc_1 (gdbarch, aspace, 1); 00247 } 00248 00249 void 00250 regcache_xfree (struct regcache *regcache) 00251 { 00252 if (regcache == NULL) 00253 return; 00254 xfree (regcache->registers); 00255 xfree (regcache->register_status); 00256 xfree (regcache); 00257 } 00258 00259 static void 00260 do_regcache_xfree (void *data) 00261 { 00262 regcache_xfree (data); 00263 } 00264 00265 struct cleanup * 00266 make_cleanup_regcache_xfree (struct regcache *regcache) 00267 { 00268 return make_cleanup (do_regcache_xfree, regcache); 00269 } 00270 00271 /* Return REGCACHE's architecture. */ 00272 00273 struct gdbarch * 00274 get_regcache_arch (const struct regcache *regcache) 00275 { 00276 return regcache->descr->gdbarch; 00277 } 00278 00279 struct address_space * 00280 get_regcache_aspace (const struct regcache *regcache) 00281 { 00282 return regcache->aspace; 00283 } 00284 00285 /* Return a pointer to register REGNUM's buffer cache. */ 00286 00287 static gdb_byte * 00288 register_buffer (const struct regcache *regcache, int regnum) 00289 { 00290 return regcache->registers + regcache->descr->register_offset[regnum]; 00291 } 00292 00293 void 00294 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read, 00295 void *src) 00296 { 00297 struct gdbarch *gdbarch = dst->descr->gdbarch; 00298 gdb_byte buf[MAX_REGISTER_SIZE]; 00299 int regnum; 00300 00301 /* The DST should be `read-only', if it wasn't then the save would 00302 end up trying to write the register values back out to the 00303 target. */ 00304 gdb_assert (dst->readonly_p); 00305 /* Clear the dest. */ 00306 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers); 00307 memset (dst->register_status, 0, 00308 dst->descr->sizeof_cooked_register_status); 00309 /* Copy over any registers (identified by their membership in the 00310 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs + 00311 gdbarch_num_pseudo_regs) range is checked since some architectures need 00312 to save/restore `cooked' registers that live in memory. */ 00313 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++) 00314 { 00315 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup)) 00316 { 00317 enum register_status status = cooked_read (src, regnum, buf); 00318 00319 if (status == REG_VALID) 00320 memcpy (register_buffer (dst, regnum), buf, 00321 register_size (gdbarch, regnum)); 00322 else 00323 { 00324 gdb_assert (status != REG_UNKNOWN); 00325 00326 memset (register_buffer (dst, regnum), 0, 00327 register_size (gdbarch, regnum)); 00328 } 00329 dst->register_status[regnum] = status; 00330 } 00331 } 00332 } 00333 00334 static void 00335 regcache_restore (struct regcache *dst, 00336 regcache_cooked_read_ftype *cooked_read, 00337 void *cooked_read_context) 00338 { 00339 struct gdbarch *gdbarch = dst->descr->gdbarch; 00340 gdb_byte buf[MAX_REGISTER_SIZE]; 00341 int regnum; 00342 00343 /* The dst had better not be read-only. If it is, the `restore' 00344 doesn't make much sense. */ 00345 gdb_assert (!dst->readonly_p); 00346 /* Copy over any registers, being careful to only restore those that 00347 were both saved and need to be restored. The full [0 .. gdbarch_num_regs 00348 + gdbarch_num_pseudo_regs) range is checked since some architectures need 00349 to save/restore `cooked' registers that live in memory. */ 00350 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++) 00351 { 00352 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup)) 00353 { 00354 enum register_status status; 00355 00356 status = cooked_read (cooked_read_context, regnum, buf); 00357 if (status == REG_VALID) 00358 regcache_cooked_write (dst, regnum, buf); 00359 } 00360 } 00361 } 00362 00363 static enum register_status 00364 do_cooked_read (void *src, int regnum, gdb_byte *buf) 00365 { 00366 struct regcache *regcache = src; 00367 00368 return regcache_cooked_read (regcache, regnum, buf); 00369 } 00370 00371 void 00372 regcache_cpy (struct regcache *dst, struct regcache *src) 00373 { 00374 gdb_assert (src != NULL && dst != NULL); 00375 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch); 00376 gdb_assert (src != dst); 00377 gdb_assert (src->readonly_p || dst->readonly_p); 00378 00379 if (!src->readonly_p) 00380 regcache_save (dst, do_cooked_read, src); 00381 else if (!dst->readonly_p) 00382 regcache_restore (dst, do_cooked_read, src); 00383 else 00384 regcache_cpy_no_passthrough (dst, src); 00385 } 00386 00387 void 00388 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src) 00389 { 00390 gdb_assert (src != NULL && dst != NULL); 00391 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch); 00392 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough 00393 move of data into a thread's regcache. Doing this would be silly 00394 - it would mean that regcache->register_status would be 00395 completely invalid. */ 00396 gdb_assert (dst->readonly_p && src->readonly_p); 00397 00398 memcpy (dst->registers, src->registers, 00399 dst->descr->sizeof_cooked_registers); 00400 memcpy (dst->register_status, src->register_status, 00401 dst->descr->sizeof_cooked_register_status); 00402 } 00403 00404 struct regcache * 00405 regcache_dup (struct regcache *src) 00406 { 00407 struct regcache *newbuf; 00408 00409 newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src)); 00410 regcache_cpy (newbuf, src); 00411 return newbuf; 00412 } 00413 00414 enum register_status 00415 regcache_register_status (const struct regcache *regcache, int regnum) 00416 { 00417 gdb_assert (regcache != NULL); 00418 gdb_assert (regnum >= 0); 00419 if (regcache->readonly_p) 00420 gdb_assert (regnum < regcache->descr->nr_cooked_registers); 00421 else 00422 gdb_assert (regnum < regcache->descr->nr_raw_registers); 00423 00424 return regcache->register_status[regnum]; 00425 } 00426 00427 void 00428 regcache_invalidate (struct regcache *regcache, int regnum) 00429 { 00430 gdb_assert (regcache != NULL); 00431 gdb_assert (regnum >= 0); 00432 gdb_assert (!regcache->readonly_p); 00433 gdb_assert (regnum < regcache->descr->nr_raw_registers); 00434 regcache->register_status[regnum] = REG_UNKNOWN; 00435 } 00436 00437 00438 /* Global structure containing the current regcache. */ 00439 00440 /* NOTE: this is a write-through cache. There is no "dirty" bit for 00441 recording if the register values have been changed (eg. by the 00442 user). Therefore all registers must be written back to the 00443 target when appropriate. */ 00444 00445 struct regcache_list 00446 { 00447 struct regcache *regcache; 00448 struct regcache_list *next; 00449 }; 00450 00451 static struct regcache_list *current_regcache; 00452 00453 struct regcache * 00454 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch, 00455 struct address_space *aspace) 00456 { 00457 struct regcache_list *list; 00458 struct regcache *new_regcache; 00459 00460 for (list = current_regcache; list; list = list->next) 00461 if (ptid_equal (list->regcache->ptid, ptid) 00462 && get_regcache_arch (list->regcache) == gdbarch) 00463 return list->regcache; 00464 00465 new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0); 00466 new_regcache->ptid = ptid; 00467 00468 list = xmalloc (sizeof (struct regcache_list)); 00469 list->regcache = new_regcache; 00470 list->next = current_regcache; 00471 current_regcache = list; 00472 00473 return new_regcache; 00474 } 00475 00476 struct regcache * 00477 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch) 00478 { 00479 struct address_space *aspace; 00480 00481 /* For the benefit of "maint print registers" & co when debugging an 00482 executable, allow dumping the regcache even when there is no 00483 thread selected (target_thread_address_space internal-errors if 00484 no address space is found). Note that normal user commands will 00485 fail higher up on the call stack due to no 00486 target_has_registers. */ 00487 aspace = (ptid_equal (null_ptid, ptid) 00488 ? NULL 00489 : target_thread_address_space (ptid)); 00490 00491 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace); 00492 } 00493 00494 static ptid_t current_thread_ptid; 00495 static struct gdbarch *current_thread_arch; 00496 00497 struct regcache * 00498 get_thread_regcache (ptid_t ptid) 00499 { 00500 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid)) 00501 { 00502 current_thread_ptid = ptid; 00503 current_thread_arch = target_thread_architecture (ptid); 00504 } 00505 00506 return get_thread_arch_regcache (ptid, current_thread_arch); 00507 } 00508 00509 struct regcache * 00510 get_current_regcache (void) 00511 { 00512 return get_thread_regcache (inferior_ptid); 00513 } 00514 00515 00516 /* Observer for the target_changed event. */ 00517 00518 static void 00519 regcache_observer_target_changed (struct target_ops *target) 00520 { 00521 registers_changed (); 00522 } 00523 00524 /* Update global variables old ptids to hold NEW_PTID if they were 00525 holding OLD_PTID. */ 00526 static void 00527 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) 00528 { 00529 struct regcache_list *list; 00530 00531 for (list = current_regcache; list; list = list->next) 00532 if (ptid_equal (list->regcache->ptid, old_ptid)) 00533 list->regcache->ptid = new_ptid; 00534 } 00535 00536 /* Low level examining and depositing of registers. 00537 00538 The caller is responsible for making sure that the inferior is 00539 stopped before calling the fetching routines, or it will get 00540 garbage. (a change from GDB version 3, in which the caller got the 00541 value from the last stop). */ 00542 00543 /* REGISTERS_CHANGED () 00544 00545 Indicate that registers may have changed, so invalidate the cache. */ 00546 00547 void 00548 registers_changed_ptid (ptid_t ptid) 00549 { 00550 struct regcache_list *list, **list_link; 00551 00552 list = current_regcache; 00553 list_link = ¤t_regcache; 00554 while (list) 00555 { 00556 if (ptid_match (list->regcache->ptid, ptid)) 00557 { 00558 struct regcache_list *dead = list; 00559 00560 *list_link = list->next; 00561 regcache_xfree (list->regcache); 00562 list = *list_link; 00563 xfree (dead); 00564 continue; 00565 } 00566 00567 list_link = &list->next; 00568 list = *list_link; 00569 } 00570 00571 if (ptid_match (current_thread_ptid, ptid)) 00572 { 00573 current_thread_ptid = null_ptid; 00574 current_thread_arch = NULL; 00575 } 00576 00577 if (ptid_match (inferior_ptid, ptid)) 00578 { 00579 /* We just deleted the regcache of the current thread. Need to 00580 forget about any frames we have cached, too. */ 00581 reinit_frame_cache (); 00582 } 00583 } 00584 00585 void 00586 registers_changed (void) 00587 { 00588 registers_changed_ptid (minus_one_ptid); 00589 00590 /* Force cleanup of any alloca areas if using C alloca instead of 00591 a builtin alloca. This particular call is used to clean up 00592 areas allocated by low level target code which may build up 00593 during lengthy interactions between gdb and the target before 00594 gdb gives control to the user (ie watchpoints). */ 00595 alloca (0); 00596 } 00597 00598 enum register_status 00599 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf) 00600 { 00601 gdb_assert (regcache != NULL && buf != NULL); 00602 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); 00603 /* Make certain that the register cache is up-to-date with respect 00604 to the current thread. This switching shouldn't be necessary 00605 only there is still only one target side register cache. Sigh! 00606 On the bright side, at least there is a regcache object. */ 00607 if (!regcache->readonly_p 00608 && regcache_register_status (regcache, regnum) == REG_UNKNOWN) 00609 { 00610 struct cleanup *old_chain = save_inferior_ptid (); 00611 00612 inferior_ptid = regcache->ptid; 00613 target_fetch_registers (regcache, regnum); 00614 do_cleanups (old_chain); 00615 00616 /* A number of targets can't access the whole set of raw 00617 registers (because the debug API provides no means to get at 00618 them). */ 00619 if (regcache->register_status[regnum] == REG_UNKNOWN) 00620 regcache->register_status[regnum] = REG_UNAVAILABLE; 00621 } 00622 00623 if (regcache->register_status[regnum] != REG_VALID) 00624 memset (buf, 0, regcache->descr->sizeof_register[regnum]); 00625 else 00626 memcpy (buf, register_buffer (regcache, regnum), 00627 regcache->descr->sizeof_register[regnum]); 00628 00629 return regcache->register_status[regnum]; 00630 } 00631 00632 enum register_status 00633 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val) 00634 { 00635 gdb_byte *buf; 00636 enum register_status status; 00637 00638 gdb_assert (regcache != NULL); 00639 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); 00640 buf = alloca (regcache->descr->sizeof_register[regnum]); 00641 status = regcache_raw_read (regcache, regnum, buf); 00642 if (status == REG_VALID) 00643 *val = extract_signed_integer 00644 (buf, regcache->descr->sizeof_register[regnum], 00645 gdbarch_byte_order (regcache->descr->gdbarch)); 00646 else 00647 *val = 0; 00648 return status; 00649 } 00650 00651 enum register_status 00652 regcache_raw_read_unsigned (struct regcache *regcache, int regnum, 00653 ULONGEST *val) 00654 { 00655 gdb_byte *buf; 00656 enum register_status status; 00657 00658 gdb_assert (regcache != NULL); 00659 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); 00660 buf = alloca (regcache->descr->sizeof_register[regnum]); 00661 status = regcache_raw_read (regcache, regnum, buf); 00662 if (status == REG_VALID) 00663 *val = extract_unsigned_integer 00664 (buf, regcache->descr->sizeof_register[regnum], 00665 gdbarch_byte_order (regcache->descr->gdbarch)); 00666 else 00667 *val = 0; 00668 return status; 00669 } 00670 00671 void 00672 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val) 00673 { 00674 void *buf; 00675 00676 gdb_assert (regcache != NULL); 00677 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers); 00678 buf = alloca (regcache->descr->sizeof_register[regnum]); 00679 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], 00680 gdbarch_byte_order (regcache->descr->gdbarch), val); 00681 regcache_raw_write (regcache, regnum, buf); 00682 } 00683 00684 void 00685 regcache_raw_write_unsigned (struct regcache *regcache, int regnum, 00686 ULONGEST val) 00687 { 00688 void *buf; 00689 00690 gdb_assert (regcache != NULL); 00691 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers); 00692 buf = alloca (regcache->descr->sizeof_register[regnum]); 00693 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], 00694 gdbarch_byte_order (regcache->descr->gdbarch), val); 00695 regcache_raw_write (regcache, regnum, buf); 00696 } 00697 00698 enum register_status 00699 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf) 00700 { 00701 gdb_assert (regnum >= 0); 00702 gdb_assert (regnum < regcache->descr->nr_cooked_registers); 00703 if (regnum < regcache->descr->nr_raw_registers) 00704 return regcache_raw_read (regcache, regnum, buf); 00705 else if (regcache->readonly_p 00706 && regcache->register_status[regnum] != REG_UNKNOWN) 00707 { 00708 /* Read-only register cache, perhaps the cooked value was 00709 cached? */ 00710 if (regcache->register_status[regnum] == REG_VALID) 00711 memcpy (buf, register_buffer (regcache, regnum), 00712 regcache->descr->sizeof_register[regnum]); 00713 else 00714 memset (buf, 0, regcache->descr->sizeof_register[regnum]); 00715 00716 return regcache->register_status[regnum]; 00717 } 00718 else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch)) 00719 { 00720 struct value *mark, *computed; 00721 enum register_status result = REG_VALID; 00722 00723 mark = value_mark (); 00724 00725 computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch, 00726 regcache, regnum); 00727 if (value_entirely_available (computed)) 00728 memcpy (buf, value_contents_raw (computed), 00729 regcache->descr->sizeof_register[regnum]); 00730 else 00731 { 00732 memset (buf, 0, regcache->descr->sizeof_register[regnum]); 00733 result = REG_UNAVAILABLE; 00734 } 00735 00736 value_free_to_mark (mark); 00737 00738 return result; 00739 } 00740 else 00741 return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache, 00742 regnum, buf); 00743 } 00744 00745 struct value * 00746 regcache_cooked_read_value (struct regcache *regcache, int regnum) 00747 { 00748 gdb_assert (regnum >= 0); 00749 gdb_assert (regnum < regcache->descr->nr_cooked_registers); 00750 00751 if (regnum < regcache->descr->nr_raw_registers 00752 || (regcache->readonly_p 00753 && regcache->register_status[regnum] != REG_UNKNOWN) 00754 || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch)) 00755 { 00756 struct value *result; 00757 00758 result = allocate_value (register_type (regcache->descr->gdbarch, 00759 regnum)); 00760 VALUE_LVAL (result) = lval_register; 00761 VALUE_REGNUM (result) = regnum; 00762 00763 /* It is more efficient in general to do this delegation in this 00764 direction than in the other one, even though the value-based 00765 API is preferred. */ 00766 if (regcache_cooked_read (regcache, regnum, 00767 value_contents_raw (result)) == REG_UNAVAILABLE) 00768 mark_value_bytes_unavailable (result, 0, 00769 TYPE_LENGTH (value_type (result))); 00770 00771 return result; 00772 } 00773 else 00774 return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch, 00775 regcache, regnum); 00776 } 00777 00778 enum register_status 00779 regcache_cooked_read_signed (struct regcache *regcache, int regnum, 00780 LONGEST *val) 00781 { 00782 enum register_status status; 00783 gdb_byte *buf; 00784 00785 gdb_assert (regcache != NULL); 00786 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers); 00787 buf = alloca (regcache->descr->sizeof_register[regnum]); 00788 status = regcache_cooked_read (regcache, regnum, buf); 00789 if (status == REG_VALID) 00790 *val = extract_signed_integer 00791 (buf, regcache->descr->sizeof_register[regnum], 00792 gdbarch_byte_order (regcache->descr->gdbarch)); 00793 else 00794 *val = 0; 00795 return status; 00796 } 00797 00798 enum register_status 00799 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum, 00800 ULONGEST *val) 00801 { 00802 enum register_status status; 00803 gdb_byte *buf; 00804 00805 gdb_assert (regcache != NULL); 00806 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers); 00807 buf = alloca (regcache->descr->sizeof_register[regnum]); 00808 status = regcache_cooked_read (regcache, regnum, buf); 00809 if (status == REG_VALID) 00810 *val = extract_unsigned_integer 00811 (buf, regcache->descr->sizeof_register[regnum], 00812 gdbarch_byte_order (regcache->descr->gdbarch)); 00813 else 00814 *val = 0; 00815 return status; 00816 } 00817 00818 void 00819 regcache_cooked_write_signed (struct regcache *regcache, int regnum, 00820 LONGEST val) 00821 { 00822 void *buf; 00823 00824 gdb_assert (regcache != NULL); 00825 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers); 00826 buf = alloca (regcache->descr->sizeof_register[regnum]); 00827 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], 00828 gdbarch_byte_order (regcache->descr->gdbarch), val); 00829 regcache_cooked_write (regcache, regnum, buf); 00830 } 00831 00832 void 00833 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum, 00834 ULONGEST val) 00835 { 00836 void *buf; 00837 00838 gdb_assert (regcache != NULL); 00839 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers); 00840 buf = alloca (regcache->descr->sizeof_register[regnum]); 00841 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], 00842 gdbarch_byte_order (regcache->descr->gdbarch), val); 00843 regcache_cooked_write (regcache, regnum, buf); 00844 } 00845 00846 void 00847 regcache_raw_write (struct regcache *regcache, int regnum, 00848 const gdb_byte *buf) 00849 { 00850 struct cleanup *old_chain; 00851 00852 gdb_assert (regcache != NULL && buf != NULL); 00853 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); 00854 gdb_assert (!regcache->readonly_p); 00855 00856 /* On the sparc, writing %g0 is a no-op, so we don't even want to 00857 change the registers array if something writes to this register. */ 00858 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum)) 00859 return; 00860 00861 /* If we have a valid copy of the register, and new value == old 00862 value, then don't bother doing the actual store. */ 00863 if (regcache_register_status (regcache, regnum) == REG_VALID 00864 && (memcmp (register_buffer (regcache, regnum), buf, 00865 regcache->descr->sizeof_register[regnum]) == 0)) 00866 return; 00867 00868 old_chain = save_inferior_ptid (); 00869 inferior_ptid = regcache->ptid; 00870 00871 target_prepare_to_store (regcache); 00872 memcpy (register_buffer (regcache, regnum), buf, 00873 regcache->descr->sizeof_register[regnum]); 00874 regcache->register_status[regnum] = REG_VALID; 00875 target_store_registers (regcache, regnum); 00876 00877 do_cleanups (old_chain); 00878 } 00879 00880 void 00881 regcache_cooked_write (struct regcache *regcache, int regnum, 00882 const gdb_byte *buf) 00883 { 00884 gdb_assert (regnum >= 0); 00885 gdb_assert (regnum < regcache->descr->nr_cooked_registers); 00886 if (regnum < regcache->descr->nr_raw_registers) 00887 regcache_raw_write (regcache, regnum, buf); 00888 else 00889 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache, 00890 regnum, buf); 00891 } 00892 00893 /* Perform a partial register transfer using a read, modify, write 00894 operation. */ 00895 00896 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum, 00897 void *buf); 00898 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum, 00899 const void *buf); 00900 00901 static enum register_status 00902 regcache_xfer_part (struct regcache *regcache, int regnum, 00903 int offset, int len, void *in, const void *out, 00904 enum register_status (*read) (struct regcache *regcache, 00905 int regnum, 00906 gdb_byte *buf), 00907 void (*write) (struct regcache *regcache, int regnum, 00908 const gdb_byte *buf)) 00909 { 00910 struct regcache_descr *descr = regcache->descr; 00911 gdb_byte reg[MAX_REGISTER_SIZE]; 00912 00913 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]); 00914 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]); 00915 /* Something to do? */ 00916 if (offset + len == 0) 00917 return REG_VALID; 00918 /* Read (when needed) ... */ 00919 if (in != NULL 00920 || offset > 0 00921 || offset + len < descr->sizeof_register[regnum]) 00922 { 00923 enum register_status status; 00924 00925 gdb_assert (read != NULL); 00926 status = read (regcache, regnum, reg); 00927 if (status != REG_VALID) 00928 return status; 00929 } 00930 /* ... modify ... */ 00931 if (in != NULL) 00932 memcpy (in, reg + offset, len); 00933 if (out != NULL) 00934 memcpy (reg + offset, out, len); 00935 /* ... write (when needed). */ 00936 if (out != NULL) 00937 { 00938 gdb_assert (write != NULL); 00939 write (regcache, regnum, reg); 00940 } 00941 00942 return REG_VALID; 00943 } 00944 00945 enum register_status 00946 regcache_raw_read_part (struct regcache *regcache, int regnum, 00947 int offset, int len, gdb_byte *buf) 00948 { 00949 struct regcache_descr *descr = regcache->descr; 00950 00951 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers); 00952 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL, 00953 regcache_raw_read, regcache_raw_write); 00954 } 00955 00956 void 00957 regcache_raw_write_part (struct regcache *regcache, int regnum, 00958 int offset, int len, const gdb_byte *buf) 00959 { 00960 struct regcache_descr *descr = regcache->descr; 00961 00962 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers); 00963 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf, 00964 regcache_raw_read, regcache_raw_write); 00965 } 00966 00967 enum register_status 00968 regcache_cooked_read_part (struct regcache *regcache, int regnum, 00969 int offset, int len, gdb_byte *buf) 00970 { 00971 struct regcache_descr *descr = regcache->descr; 00972 00973 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); 00974 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL, 00975 regcache_cooked_read, regcache_cooked_write); 00976 } 00977 00978 void 00979 regcache_cooked_write_part (struct regcache *regcache, int regnum, 00980 int offset, int len, const gdb_byte *buf) 00981 { 00982 struct regcache_descr *descr = regcache->descr; 00983 00984 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); 00985 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf, 00986 regcache_cooked_read, regcache_cooked_write); 00987 } 00988 00989 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */ 00990 00991 void 00992 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf) 00993 { 00994 void *regbuf; 00995 size_t size; 00996 00997 gdb_assert (regcache != NULL); 00998 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); 00999 gdb_assert (!regcache->readonly_p); 01000 01001 regbuf = register_buffer (regcache, regnum); 01002 size = regcache->descr->sizeof_register[regnum]; 01003 01004 if (buf) 01005 { 01006 memcpy (regbuf, buf, size); 01007 regcache->register_status[regnum] = REG_VALID; 01008 } 01009 else 01010 { 01011 /* This memset not strictly necessary, but better than garbage 01012 in case the register value manages to escape somewhere (due 01013 to a bug, no less). */ 01014 memset (regbuf, 0, size); 01015 regcache->register_status[regnum] = REG_UNAVAILABLE; 01016 } 01017 } 01018 01019 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */ 01020 01021 void 01022 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf) 01023 { 01024 const void *regbuf; 01025 size_t size; 01026 01027 gdb_assert (regcache != NULL && buf != NULL); 01028 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); 01029 01030 regbuf = register_buffer (regcache, regnum); 01031 size = regcache->descr->sizeof_register[regnum]; 01032 memcpy (buf, regbuf, size); 01033 } 01034 01035 01036 /* Special handling for register PC. */ 01037 01038 CORE_ADDR 01039 regcache_read_pc (struct regcache *regcache) 01040 { 01041 struct gdbarch *gdbarch = get_regcache_arch (regcache); 01042 01043 CORE_ADDR pc_val; 01044 01045 if (gdbarch_read_pc_p (gdbarch)) 01046 pc_val = gdbarch_read_pc (gdbarch, regcache); 01047 /* Else use per-frame method on get_current_frame. */ 01048 else if (gdbarch_pc_regnum (gdbarch) >= 0) 01049 { 01050 ULONGEST raw_val; 01051 01052 if (regcache_cooked_read_unsigned (regcache, 01053 gdbarch_pc_regnum (gdbarch), 01054 &raw_val) == REG_UNAVAILABLE) 01055 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available")); 01056 01057 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val); 01058 } 01059 else 01060 internal_error (__FILE__, __LINE__, 01061 _("regcache_read_pc: Unable to find PC")); 01062 return pc_val; 01063 } 01064 01065 void 01066 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc) 01067 { 01068 struct gdbarch *gdbarch = get_regcache_arch (regcache); 01069 01070 if (gdbarch_write_pc_p (gdbarch)) 01071 gdbarch_write_pc (gdbarch, regcache, pc); 01072 else if (gdbarch_pc_regnum (gdbarch) >= 0) 01073 regcache_cooked_write_unsigned (regcache, 01074 gdbarch_pc_regnum (gdbarch), pc); 01075 else 01076 internal_error (__FILE__, __LINE__, 01077 _("regcache_write_pc: Unable to update PC")); 01078 01079 /* Writing the PC (for instance, from "load") invalidates the 01080 current frame. */ 01081 reinit_frame_cache (); 01082 } 01083 01084 01085 static void 01086 reg_flush_command (char *command, int from_tty) 01087 { 01088 /* Force-flush the register cache. */ 01089 registers_changed (); 01090 if (from_tty) 01091 printf_filtered (_("Register cache flushed.\n")); 01092 } 01093 01094 enum regcache_dump_what 01095 { 01096 regcache_dump_none, regcache_dump_raw, 01097 regcache_dump_cooked, regcache_dump_groups, 01098 regcache_dump_remote 01099 }; 01100 01101 static void 01102 regcache_dump (struct regcache *regcache, struct ui_file *file, 01103 enum regcache_dump_what what_to_dump) 01104 { 01105 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL); 01106 struct gdbarch *gdbarch = regcache->descr->gdbarch; 01107 int regnum; 01108 int footnote_nr = 0; 01109 int footnote_register_size = 0; 01110 int footnote_register_offset = 0; 01111 int footnote_register_type_name_null = 0; 01112 long register_offset = 0; 01113 gdb_byte buf[MAX_REGISTER_SIZE]; 01114 01115 #if 0 01116 fprintf_unfiltered (file, "nr_raw_registers %d\n", 01117 regcache->descr->nr_raw_registers); 01118 fprintf_unfiltered (file, "nr_cooked_registers %d\n", 01119 regcache->descr->nr_cooked_registers); 01120 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n", 01121 regcache->descr->sizeof_raw_registers); 01122 fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n", 01123 regcache->descr->sizeof_raw_register_status); 01124 fprintf_unfiltered (file, "gdbarch_num_regs %d\n", 01125 gdbarch_num_regs (gdbarch)); 01126 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n", 01127 gdbarch_num_pseudo_regs (gdbarch)); 01128 #endif 01129 01130 gdb_assert (regcache->descr->nr_cooked_registers 01131 == (gdbarch_num_regs (gdbarch) 01132 + gdbarch_num_pseudo_regs (gdbarch))); 01133 01134 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++) 01135 { 01136 /* Name. */ 01137 if (regnum < 0) 01138 fprintf_unfiltered (file, " %-10s", "Name"); 01139 else 01140 { 01141 const char *p = gdbarch_register_name (gdbarch, regnum); 01142 01143 if (p == NULL) 01144 p = ""; 01145 else if (p[0] == '\0') 01146 p = "''"; 01147 fprintf_unfiltered (file, " %-10s", p); 01148 } 01149 01150 /* Number. */ 01151 if (regnum < 0) 01152 fprintf_unfiltered (file, " %4s", "Nr"); 01153 else 01154 fprintf_unfiltered (file, " %4d", regnum); 01155 01156 /* Relative number. */ 01157 if (regnum < 0) 01158 fprintf_unfiltered (file, " %4s", "Rel"); 01159 else if (regnum < gdbarch_num_regs (gdbarch)) 01160 fprintf_unfiltered (file, " %4d", regnum); 01161 else 01162 fprintf_unfiltered (file, " %4d", 01163 (regnum - gdbarch_num_regs (gdbarch))); 01164 01165 /* Offset. */ 01166 if (regnum < 0) 01167 fprintf_unfiltered (file, " %6s ", "Offset"); 01168 else 01169 { 01170 fprintf_unfiltered (file, " %6ld", 01171 regcache->descr->register_offset[regnum]); 01172 if (register_offset != regcache->descr->register_offset[regnum] 01173 || (regnum > 0 01174 && (regcache->descr->register_offset[regnum] 01175 != (regcache->descr->register_offset[regnum - 1] 01176 + regcache->descr->sizeof_register[regnum - 1]))) 01177 ) 01178 { 01179 if (!footnote_register_offset) 01180 footnote_register_offset = ++footnote_nr; 01181 fprintf_unfiltered (file, "*%d", footnote_register_offset); 01182 } 01183 else 01184 fprintf_unfiltered (file, " "); 01185 register_offset = (regcache->descr->register_offset[regnum] 01186 + regcache->descr->sizeof_register[regnum]); 01187 } 01188 01189 /* Size. */ 01190 if (regnum < 0) 01191 fprintf_unfiltered (file, " %5s ", "Size"); 01192 else 01193 fprintf_unfiltered (file, " %5ld", 01194 regcache->descr->sizeof_register[regnum]); 01195 01196 /* Type. */ 01197 { 01198 const char *t; 01199 01200 if (regnum < 0) 01201 t = "Type"; 01202 else 01203 { 01204 static const char blt[] = "builtin_type"; 01205 01206 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum)); 01207 if (t == NULL) 01208 { 01209 char *n; 01210 01211 if (!footnote_register_type_name_null) 01212 footnote_register_type_name_null = ++footnote_nr; 01213 n = xstrprintf ("*%d", footnote_register_type_name_null); 01214 make_cleanup (xfree, n); 01215 t = n; 01216 } 01217 /* Chop a leading builtin_type. */ 01218 if (strncmp (t, blt, strlen (blt)) == 0) 01219 t += strlen (blt); 01220 } 01221 fprintf_unfiltered (file, " %-15s", t); 01222 } 01223 01224 /* Leading space always present. */ 01225 fprintf_unfiltered (file, " "); 01226 01227 /* Value, raw. */ 01228 if (what_to_dump == regcache_dump_raw) 01229 { 01230 if (regnum < 0) 01231 fprintf_unfiltered (file, "Raw value"); 01232 else if (regnum >= regcache->descr->nr_raw_registers) 01233 fprintf_unfiltered (file, "<cooked>"); 01234 else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN) 01235 fprintf_unfiltered (file, "<invalid>"); 01236 else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE) 01237 fprintf_unfiltered (file, "<unavailable>"); 01238 else 01239 { 01240 regcache_raw_read (regcache, regnum, buf); 01241 print_hex_chars (file, buf, 01242 regcache->descr->sizeof_register[regnum], 01243 gdbarch_byte_order (gdbarch)); 01244 } 01245 } 01246 01247 /* Value, cooked. */ 01248 if (what_to_dump == regcache_dump_cooked) 01249 { 01250 if (regnum < 0) 01251 fprintf_unfiltered (file, "Cooked value"); 01252 else 01253 { 01254 enum register_status status; 01255 01256 status = regcache_cooked_read (regcache, regnum, buf); 01257 if (status == REG_UNKNOWN) 01258 fprintf_unfiltered (file, "<invalid>"); 01259 else if (status == REG_UNAVAILABLE) 01260 fprintf_unfiltered (file, "<unavailable>"); 01261 else 01262 print_hex_chars (file, buf, 01263 regcache->descr->sizeof_register[regnum], 01264 gdbarch_byte_order (gdbarch)); 01265 } 01266 } 01267 01268 /* Group members. */ 01269 if (what_to_dump == regcache_dump_groups) 01270 { 01271 if (regnum < 0) 01272 fprintf_unfiltered (file, "Groups"); 01273 else 01274 { 01275 const char *sep = ""; 01276 struct reggroup *group; 01277 01278 for (group = reggroup_next (gdbarch, NULL); 01279 group != NULL; 01280 group = reggroup_next (gdbarch, group)) 01281 { 01282 if (gdbarch_register_reggroup_p (gdbarch, regnum, group)) 01283 { 01284 fprintf_unfiltered (file, 01285 "%s%s", sep, reggroup_name (group)); 01286 sep = ","; 01287 } 01288 } 01289 } 01290 } 01291 01292 /* Remote packet configuration. */ 01293 if (what_to_dump == regcache_dump_remote) 01294 { 01295 if (regnum < 0) 01296 { 01297 fprintf_unfiltered (file, "Rmt Nr g/G Offset"); 01298 } 01299 else if (regnum < regcache->descr->nr_raw_registers) 01300 { 01301 int pnum, poffset; 01302 01303 if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum, 01304 &pnum, &poffset)) 01305 fprintf_unfiltered (file, "%7d %11d", pnum, poffset); 01306 } 01307 } 01308 01309 fprintf_unfiltered (file, "\n"); 01310 } 01311 01312 if (footnote_register_size) 01313 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n", 01314 footnote_register_size); 01315 if (footnote_register_offset) 01316 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n", 01317 footnote_register_offset); 01318 if (footnote_register_type_name_null) 01319 fprintf_unfiltered (file, 01320 "*%d: Register type's name NULL.\n", 01321 footnote_register_type_name_null); 01322 do_cleanups (cleanups); 01323 } 01324 01325 static void 01326 regcache_print (char *args, enum regcache_dump_what what_to_dump) 01327 { 01328 if (args == NULL) 01329 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump); 01330 else 01331 { 01332 struct cleanup *cleanups; 01333 struct ui_file *file = gdb_fopen (args, "w"); 01334 01335 if (file == NULL) 01336 perror_with_name (_("maintenance print architecture")); 01337 cleanups = make_cleanup_ui_file_delete (file); 01338 regcache_dump (get_current_regcache (), file, what_to_dump); 01339 do_cleanups (cleanups); 01340 } 01341 } 01342 01343 static void 01344 maintenance_print_registers (char *args, int from_tty) 01345 { 01346 regcache_print (args, regcache_dump_none); 01347 } 01348 01349 static void 01350 maintenance_print_raw_registers (char *args, int from_tty) 01351 { 01352 regcache_print (args, regcache_dump_raw); 01353 } 01354 01355 static void 01356 maintenance_print_cooked_registers (char *args, int from_tty) 01357 { 01358 regcache_print (args, regcache_dump_cooked); 01359 } 01360 01361 static void 01362 maintenance_print_register_groups (char *args, int from_tty) 01363 { 01364 regcache_print (args, regcache_dump_groups); 01365 } 01366 01367 static void 01368 maintenance_print_remote_registers (char *args, int from_tty) 01369 { 01370 regcache_print (args, regcache_dump_remote); 01371 } 01372 01373 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */ 01374 01375 void 01376 _initialize_regcache (void) 01377 { 01378 regcache_descr_handle 01379 = gdbarch_data_register_post_init (init_regcache_descr); 01380 01381 observer_attach_target_changed (regcache_observer_target_changed); 01382 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed); 01383 01384 add_com ("flushregs", class_maintenance, reg_flush_command, 01385 _("Force gdb to flush its register cache (maintainer command)")); 01386 01387 add_cmd ("registers", class_maintenance, maintenance_print_registers, 01388 _("Print the internal register configuration.\n" 01389 "Takes an optional file parameter."), &maintenanceprintlist); 01390 add_cmd ("raw-registers", class_maintenance, 01391 maintenance_print_raw_registers, 01392 _("Print the internal register configuration " 01393 "including raw values.\n" 01394 "Takes an optional file parameter."), &maintenanceprintlist); 01395 add_cmd ("cooked-registers", class_maintenance, 01396 maintenance_print_cooked_registers, 01397 _("Print the internal register configuration " 01398 "including cooked values.\n" 01399 "Takes an optional file parameter."), &maintenanceprintlist); 01400 add_cmd ("register-groups", class_maintenance, 01401 maintenance_print_register_groups, 01402 _("Print the internal register configuration " 01403 "including each register's group.\n" 01404 "Takes an optional file parameter."), 01405 &maintenanceprintlist); 01406 add_cmd ("remote-registers", class_maintenance, 01407 maintenance_print_remote_registers, _("\ 01408 Print the internal register configuration including each register's\n\ 01409 remote register number and buffer offset in the g/G packets.\n\ 01410 Takes an optional file parameter."), 01411 &maintenanceprintlist); 01412 01413 }