GDB (API)
/home/stan/gdb/src/gdb/ppc64-tdep.c
Go to the documentation of this file.
00001 /* Common target-dependent code for ppc64 GDB, the GNU debugger.
00002 
00003    Copyright (C) 1986-2013 Free Software Foundation, Inc.
00004 
00005    This file is part of GDB.
00006 
00007    This program is free software; you can redistribute it and/or modify
00008    it under the terms of the GNU General Public License as published by
00009    the Free Software Foundation; either version 3 of the License, or
00010    (at your option) any later version.
00011 
00012    This program is distributed in the hope that it will be useful,
00013    but WITHOUT ANY WARRANTY; without even the implied warranty of
00014    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015    GNU General Public License for more details.
00016 
00017    You should have received a copy of the GNU General Public License
00018    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
00019 
00020 #include "defs.h"
00021 #include "frame.h"
00022 #include "gdbcore.h"
00023 #include "ppc-tdep.h"
00024 #include "ppc64-tdep.h"
00025 #include "elf-bfd.h"
00026 
00027 /* Macros for matching instructions.  Note that, since all the
00028    operands are masked off before they're or-ed into the instruction,
00029    you can use -1 to make masks.  */
00030 
00031 #define insn_d(opcd, rts, ra, d)                \
00032   ((((opcd) & 0x3f) << 26)                      \
00033    | (((rts) & 0x1f) << 21)                     \
00034    | (((ra) & 0x1f) << 16)                      \
00035    | ((d) & 0xffff))
00036 
00037 #define insn_ds(opcd, rts, ra, d, xo)           \
00038   ((((opcd) & 0x3f) << 26)                      \
00039    | (((rts) & 0x1f) << 21)                     \
00040    | (((ra) & 0x1f) << 16)                      \
00041    | ((d) & 0xfffc)                             \
00042    | ((xo) & 0x3))
00043 
00044 #define insn_xfx(opcd, rts, spr, xo)            \
00045   ((((opcd) & 0x3f) << 26)                      \
00046    | (((rts) & 0x1f) << 21)                     \
00047    | (((spr) & 0x1f) << 16)                     \
00048    | (((spr) & 0x3e0) << 6)                     \
00049    | (((xo) & 0x3ff) << 1))
00050 
00051 /* If DESC is the address of a 64-bit PowerPC FreeBSD function
00052    descriptor, return the descriptor's entry point.  */
00053 
00054 static CORE_ADDR
00055 ppc64_desc_entry_point (struct gdbarch *gdbarch, CORE_ADDR desc)
00056 {
00057   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00058   /* The first word of the descriptor is the entry point.  */
00059   return (CORE_ADDR) read_memory_unsigned_integer (desc, 8, byte_order);
00060 }
00061 
00062 /* Patterns for the standard linkage functions.  These are built by
00063    build_plt_stub in bfd/elf64-ppc.c.  */
00064 
00065 /* Old PLT call stub.  */
00066 
00067 static struct ppc_insn_pattern ppc64_standard_linkage1[] =
00068   {
00069     /* addis r12, r2, <any> */
00070     { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
00071 
00072     /* std r2, 40(r1) */
00073     { -1, insn_ds (62, 2, 1, 40, 0), 0 },
00074 
00075     /* ld r11, <any>(r12) */
00076     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
00077 
00078     /* addis r12, r12, 1 <optional> */
00079     { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
00080 
00081     /* ld r2, <any>(r12) */
00082     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
00083 
00084     /* addis r12, r12, 1 <optional> */
00085     { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 },
00086 
00087     /* mtctr r11 */
00088     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
00089 
00090     /* ld r11, <any>(r12) <optional> */
00091     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
00092 
00093     /* bctr */
00094     { -1, 0x4e800420, 0 },
00095 
00096     { 0, 0, 0 }
00097   };
00098 
00099 /* Current PLT call stub to access PLT entries more than +/- 32k from r2.
00100    Also supports older stub with different placement of std 2,40(1),
00101    a stub that omits the std 2,40(1), and both versions of power7
00102    thread safety read barriers.  Note that there are actually two more
00103    instructions following "cmpldi r2, 0", "bnectr+" and "b <glink_i>",
00104    but there isn't any need to match them.  */
00105 
00106 static struct ppc_insn_pattern ppc64_standard_linkage2[] =
00107   {
00108     /* std r2, 40(r1) <optional> */
00109     { -1, insn_ds (62, 2, 1, 40, 0), 1 },
00110 
00111     /* addis r12, r2, <any> */
00112     { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
00113 
00114     /* std r2, 40(r1) <optional> */
00115     { -1, insn_ds (62, 2, 1, 40, 0), 1 },
00116 
00117     /* ld r11, <any>(r12) */
00118     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
00119 
00120     /* addi r12, r12, <any> <optional> */
00121     { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 },
00122 
00123     /* mtctr r11 */
00124     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
00125 
00126     /* xor r11, r11, r11 <optional> */
00127     { -1, 0x7d6b5a78, 1 },
00128 
00129     /* add r12, r12, r11 <optional> */
00130     { -1, 0x7d8c5a14, 1 },
00131 
00132     /* ld r2, <any>(r12) */
00133     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
00134 
00135     /* ld r11, <any>(r12) <optional> */
00136     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 1 },
00137 
00138     /* bctr <optional> */
00139     { -1, 0x4e800420, 1 },
00140 
00141     /* cmpldi r2, 0 <optional> */
00142     { -1, 0x28220000, 1 },
00143 
00144     { 0, 0, 0 }
00145   };
00146 
00147 /* Current PLT call stub to access PLT entries within +/- 32k of r2.  */
00148 
00149 static struct ppc_insn_pattern ppc64_standard_linkage3[] =
00150   {
00151     /* std r2, 40(r1) <optional> */
00152     { -1, insn_ds (62, 2, 1, 40, 0), 1 },
00153 
00154     /* ld r11, <any>(r2) */
00155     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 },
00156 
00157     /* addi r2, r2, <any> <optional> */
00158     { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 },
00159 
00160     /* mtctr r11 */
00161     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 },
00162 
00163     /* xor r11, r11, r11 <optional> */
00164     { -1, 0x7d6b5a78, 1 },
00165 
00166     /* add r2, r2, r11 <optional> */
00167     { -1, 0x7c425a14, 1 },
00168 
00169     /* ld r11, <any>(r2) <optional> */
00170     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 1 },
00171 
00172     /* ld r2, <any>(r2) */
00173     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 },
00174 
00175     /* bctr <optional> */
00176     { -1, 0x4e800420, 1 },
00177 
00178     /* cmpldi r2, 0 <optional> */
00179     { -1, 0x28220000, 1 },
00180 
00181     { 0, 0, 0 }
00182   };
00183 
00184 /* When the dynamic linker is doing lazy symbol resolution, the first
00185    call to a function in another object will go like this:
00186 
00187    - The user's function calls the linkage function:
00188 
00189         100003d4:   4b ff ff ad     bl      10000380 <nnnn.plt_call.printf>
00190         100003d8:   e8 41 00 28     ld      r2,40(r1)
00191 
00192    - The linkage function loads the entry point and toc pointer from
00193      the function descriptor in the PLT, and jumps to it:
00194 
00195      <nnnn.plt_call.printf>:
00196         10000380:   f8 41 00 28     std     r2,40(r1)
00197         10000384:   e9 62 80 78     ld      r11,-32648(r2)
00198         10000388:   7d 69 03 a6     mtctr   r11
00199         1000038c:   e8 42 80 80     ld      r2,-32640(r2)
00200         10000390:   28 22 00 00     cmpldi  r2,0
00201         10000394:   4c e2 04 20     bnectr+ 
00202         10000398:   48 00 03 a0     b       10000738 <printf@plt>
00203 
00204    - But since this is the first time that PLT entry has been used, it
00205      sends control to its glink entry.  That loads the number of the
00206      PLT entry and jumps to the common glink0 code:
00207 
00208      <printf@plt>:
00209         10000738:   38 00 00 01     li      r0,1
00210         1000073c:   4b ff ff bc     b       100006f8 <__glink_PLTresolve>
00211 
00212    - The common glink0 code then transfers control to the dynamic
00213      linker's fixup code:
00214 
00215         100006f0:   0000000000010440 .quad plt0 - (. + 16)
00216      <__glink_PLTresolve>:
00217         100006f8:   7d 88 02 a6     mflr    r12
00218         100006fc:   42 9f 00 05     bcl     20,4*cr7+so,10000700
00219         10000700:   7d 68 02 a6     mflr    r11
00220         10000704:   e8 4b ff f0     ld      r2,-16(r11)
00221         10000708:   7d 88 03 a6     mtlr    r12
00222         1000070c:   7d 82 5a 14     add     r12,r2,r11
00223         10000710:   e9 6c 00 00     ld      r11,0(r12)
00224         10000714:   e8 4c 00 08     ld      r2,8(r12)
00225         10000718:   7d 69 03 a6     mtctr   r11
00226         1000071c:   e9 6c 00 10     ld      r11,16(r12)
00227         10000720:   4e 80 04 20     bctr
00228 
00229    Eventually, this code will figure out how to skip all of this,
00230    including the dynamic linker.  At the moment, we just get through
00231    the linkage function.  */
00232 
00233 /* If the current thread is about to execute a series of instructions
00234    at PC matching the ppc64_standard_linkage pattern, and INSN is the result
00235    from that pattern match, return the code address to which the
00236    standard linkage function will send them.  (This doesn't deal with
00237    dynamic linker lazy symbol resolution stubs.)  */
00238 
00239 static CORE_ADDR
00240 ppc64_standard_linkage1_target (struct frame_info *frame,
00241                                 CORE_ADDR pc, unsigned int *insn)
00242 {
00243   struct gdbarch *gdbarch = get_frame_arch (frame);
00244   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
00245 
00246   /* The address of the function descriptor this linkage function
00247      references.  */
00248   CORE_ADDR desc
00249     = ((CORE_ADDR) get_frame_register_unsigned (frame,
00250                                                 tdep->ppc_gp0_regnum + 2)
00251        + (ppc_insn_d_field (insn[0]) << 16)
00252        + ppc_insn_ds_field (insn[2]));
00253 
00254   /* The first word of the descriptor is the entry point.  Return that.  */
00255   return ppc64_desc_entry_point (gdbarch, desc);
00256 }
00257 
00258 static CORE_ADDR
00259 ppc64_standard_linkage2_target (struct frame_info *frame,
00260                                 CORE_ADDR pc, unsigned int *insn)
00261 {
00262   struct gdbarch *gdbarch = get_frame_arch (frame);
00263   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
00264 
00265   /* The address of the function descriptor this linkage function
00266      references.  */
00267   CORE_ADDR desc
00268     = ((CORE_ADDR) get_frame_register_unsigned (frame,
00269                                                 tdep->ppc_gp0_regnum + 2)
00270        + (ppc_insn_d_field (insn[1]) << 16)
00271        + ppc_insn_ds_field (insn[3]));
00272 
00273   /* The first word of the descriptor is the entry point.  Return that.  */
00274   return ppc64_desc_entry_point (gdbarch, desc);
00275 }
00276 
00277 static CORE_ADDR
00278 ppc64_standard_linkage3_target (struct frame_info *frame,
00279                                 CORE_ADDR pc, unsigned int *insn)
00280 {
00281   struct gdbarch *gdbarch = get_frame_arch (frame);
00282   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
00283 
00284   /* The address of the function descriptor this linkage function
00285      references.  */
00286   CORE_ADDR desc
00287     = ((CORE_ADDR) get_frame_register_unsigned (frame,
00288                                                 tdep->ppc_gp0_regnum + 2)
00289        + ppc_insn_ds_field (insn[1]));
00290 
00291   /* The first word of the descriptor is the entry point.  Return that.  */
00292   return ppc64_desc_entry_point (gdbarch, desc);
00293 }
00294 
00295 
00296 /* Given that we've begun executing a call trampoline at PC, return
00297    the entry point of the function the trampoline will go to.  */
00298 
00299 CORE_ADDR
00300 ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
00301 {
00302 #define MAX(a,b) ((a) > (b) ? (a) : (b))
00303   unsigned int insns[MAX (MAX (ARRAY_SIZE (ppc64_standard_linkage1),
00304                                ARRAY_SIZE (ppc64_standard_linkage2)),
00305                           ARRAY_SIZE (ppc64_standard_linkage3)) - 1];
00306   CORE_ADDR target;
00307 
00308   if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage3, insns)
00309       && (insns[8] != 0 || insns[9] != 0))
00310     pc = ppc64_standard_linkage3_target (frame, pc, insns);
00311   else if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage2, insns)
00312            && (insns[10] != 0 || insns[11] != 0))
00313     pc = ppc64_standard_linkage2_target (frame, pc, insns);
00314   else if (ppc_insns_match_pattern (frame, pc, ppc64_standard_linkage1, insns))
00315     pc = ppc64_standard_linkage1_target (frame, pc, insns);
00316   else
00317     return 0;
00318 
00319   /* The PLT descriptor will either point to the already resolved target
00320      address, or else to a glink stub.  As the latter carry synthetic @plt
00321      symbols, find_solib_trampoline_target should be able to resolve them.  */
00322   target = find_solib_trampoline_target (frame, pc);
00323   return target ? target : pc;
00324 }
00325 
00326 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
00327    GNU/Linux.
00328 
00329    Usually a function pointer's representation is simply the address
00330    of the function.  On GNU/Linux on the PowerPC however, a function
00331    pointer may be a pointer to a function descriptor.
00332 
00333    For PPC64, a function descriptor is a TOC entry, in a data section,
00334    which contains three words: the first word is the address of the
00335    function, the second word is the TOC pointer (r2), and the third word
00336    is the static chain value.
00337 
00338    Throughout GDB it is currently assumed that a function pointer contains
00339    the address of the function, which is not easy to fix.  In addition, the
00340    conversion of a function address to a function pointer would
00341    require allocation of a TOC entry in the inferior's memory space,
00342    with all its drawbacks.  To be able to call C++ virtual methods in
00343    the inferior (which are called via function pointers),
00344    find_function_addr uses this function to get the function address
00345    from a function pointer.
00346 
00347    If ADDR points at what is clearly a function descriptor, transform
00348    it into the address of the corresponding function, if needed.  Be
00349    conservative, otherwise GDB will do the transformation on any
00350    random addresses such as occur when there is no symbol table.  */
00351 
00352 CORE_ADDR
00353 ppc64_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
00354                                         CORE_ADDR addr,
00355                                         struct target_ops *targ)
00356 {
00357   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00358   struct target_section *s = target_section_by_addr (targ, addr);
00359 
00360   /* Check if ADDR points to a function descriptor.  */
00361   if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
00362     {
00363       /* There may be relocations that need to be applied to the .opd 
00364          section.  Unfortunately, this function may be called at a time
00365          where these relocations have not yet been performed -- this can
00366          happen for example shortly after a library has been loaded with
00367          dlopen, but ld.so has not yet applied the relocations.
00368 
00369          To cope with both the case where the relocation has been applied,
00370          and the case where it has not yet been applied, we do *not* read
00371          the (maybe) relocated value from target memory, but we instead
00372          read the non-relocated value from the BFD, and apply the relocation
00373          offset manually.
00374 
00375          This makes the assumption that all .opd entries are always relocated
00376          by the same offset the section itself was relocated.  This should
00377          always be the case for GNU/Linux executables and shared libraries.
00378          Note that other kind of object files (e.g. those added via
00379          add-symbol-files) will currently never end up here anyway, as this
00380          function accesses *target* sections only; only the main exec and
00381          shared libraries are ever added to the target.  */
00382 
00383       gdb_byte buf[8];
00384       int res;
00385 
00386       res = bfd_get_section_contents (s->the_bfd_section->owner,
00387                                       s->the_bfd_section,
00388                                       &buf, addr - s->addr, 8);
00389       if (res != 0)
00390         return extract_unsigned_integer (buf, 8, byte_order)
00391                 - bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr;
00392    }
00393 
00394   return addr;
00395 }
00396 
00397 /* A synthetic 'dot' symbols on ppc64 has the udata.p entry pointing
00398    back to the original ELF symbol it was derived from.  Get the size
00399    from that symbol.  */
00400 
00401 void
00402 ppc64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
00403 {
00404   if ((sym->flags & BSF_SYNTHETIC) != 0 && sym->udata.p != NULL)
00405     {
00406       elf_symbol_type *elf_sym = (elf_symbol_type *) sym->udata.p;
00407       SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
00408     }
00409 }
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Defines