GDB (API)
|
00001 /* Target-dependent code for GDB, the GNU debugger. 00002 00003 Copyright (C) 1986-2013 Free Software Foundation, Inc. 00004 00005 This file is part of GDB. 00006 00007 This program is free software; you can redistribute it and/or modify 00008 it under the terms of the GNU General Public License as published by 00009 the Free Software Foundation; either version 3 of the License, or 00010 (at your option) any later version. 00011 00012 This program is distributed in the hope that it will be useful, 00013 but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 GNU General Public License for more details. 00016 00017 You should have received a copy of the GNU General Public License 00018 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 00019 00020 #include "defs.h" 00021 #include "frame.h" 00022 #include "inferior.h" 00023 #include "symtab.h" 00024 #include "target.h" 00025 #include "gdbcore.h" 00026 #include "gdbcmd.h" 00027 #include "symfile.h" 00028 #include "objfiles.h" 00029 #include "regcache.h" 00030 #include "value.h" 00031 #include "osabi.h" 00032 #include "regset.h" 00033 #include "solib-svr4.h" 00034 #include "solib-spu.h" 00035 #include "solib.h" 00036 #include "solist.h" 00037 #include "ppc-tdep.h" 00038 #include "ppc64-tdep.h" 00039 #include "ppc-linux-tdep.h" 00040 #include "glibc-tdep.h" 00041 #include "trad-frame.h" 00042 #include "frame-unwind.h" 00043 #include "tramp-frame.h" 00044 #include "observer.h" 00045 #include "auxv.h" 00046 #include "elf/common.h" 00047 #include "exceptions.h" 00048 #include "arch-utils.h" 00049 #include "spu-tdep.h" 00050 #include "xml-syscall.h" 00051 #include "linux-tdep.h" 00052 00053 #include "stap-probe.h" 00054 #include "ax.h" 00055 #include "ax-gdb.h" 00056 #include "cli/cli-utils.h" 00057 #include "parser-defs.h" 00058 #include "user-regs.h" 00059 #include <ctype.h> 00060 #include "elf-bfd.h" /* for elfcore_write_* */ 00061 00062 #include "features/rs6000/powerpc-32l.c" 00063 #include "features/rs6000/powerpc-altivec32l.c" 00064 #include "features/rs6000/powerpc-cell32l.c" 00065 #include "features/rs6000/powerpc-vsx32l.c" 00066 #include "features/rs6000/powerpc-isa205-32l.c" 00067 #include "features/rs6000/powerpc-isa205-altivec32l.c" 00068 #include "features/rs6000/powerpc-isa205-vsx32l.c" 00069 #include "features/rs6000/powerpc-64l.c" 00070 #include "features/rs6000/powerpc-altivec64l.c" 00071 #include "features/rs6000/powerpc-cell64l.c" 00072 #include "features/rs6000/powerpc-vsx64l.c" 00073 #include "features/rs6000/powerpc-isa205-64l.c" 00074 #include "features/rs6000/powerpc-isa205-altivec64l.c" 00075 #include "features/rs6000/powerpc-isa205-vsx64l.c" 00076 #include "features/rs6000/powerpc-e500l.c" 00077 00078 /* Shared library operations for PowerPC-Linux. */ 00079 static struct target_so_ops powerpc_so_ops; 00080 00081 /* The syscall's XML filename for PPC and PPC64. */ 00082 #define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml" 00083 #define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml" 00084 00085 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint 00086 in much the same fashion as memory_remove_breakpoint in mem-break.c, 00087 but is careful not to write back the previous contents if the code 00088 in question has changed in between inserting the breakpoint and 00089 removing it. 00090 00091 Here is the problem that we're trying to solve... 00092 00093 Once upon a time, before introducing this function to remove 00094 breakpoints from the inferior, setting a breakpoint on a shared 00095 library function prior to running the program would not work 00096 properly. In order to understand the problem, it is first 00097 necessary to understand a little bit about dynamic linking on 00098 this platform. 00099 00100 A call to a shared library function is accomplished via a bl 00101 (branch-and-link) instruction whose branch target is an entry 00102 in the procedure linkage table (PLT). The PLT in the object 00103 file is uninitialized. To gdb, prior to running the program, the 00104 entries in the PLT are all zeros. 00105 00106 Once the program starts running, the shared libraries are loaded 00107 and the procedure linkage table is initialized, but the entries in 00108 the table are not (necessarily) resolved. Once a function is 00109 actually called, the code in the PLT is hit and the function is 00110 resolved. In order to better illustrate this, an example is in 00111 order; the following example is from the gdb testsuite. 00112 00113 We start the program shmain. 00114 00115 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain 00116 [...] 00117 00118 We place two breakpoints, one on shr1 and the other on main. 00119 00120 (gdb) b shr1 00121 Breakpoint 1 at 0x100409d4 00122 (gdb) b main 00123 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44. 00124 00125 Examine the instruction (and the immediatly following instruction) 00126 upon which the breakpoint was placed. Note that the PLT entry 00127 for shr1 contains zeros. 00128 00129 (gdb) x/2i 0x100409d4 00130 0x100409d4 <shr1>: .long 0x0 00131 0x100409d8 <shr1+4>: .long 0x0 00132 00133 Now run 'til main. 00134 00135 (gdb) r 00136 Starting program: gdb.base/shmain 00137 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19. 00138 00139 Breakpoint 2, main () 00140 at gdb.base/shmain.c:44 00141 44 g = 1; 00142 00143 Examine the PLT again. Note that the loading of the shared 00144 library has initialized the PLT to code which loads a constant 00145 (which I think is an index into the GOT) into r11 and then 00146 branchs a short distance to the code which actually does the 00147 resolving. 00148 00149 (gdb) x/2i 0x100409d4 00150 0x100409d4 <shr1>: li r11,4 00151 0x100409d8 <shr1+4>: b 0x10040984 <sg+4> 00152 (gdb) c 00153 Continuing. 00154 00155 Breakpoint 1, shr1 (x=1) 00156 at gdb.base/shr1.c:19 00157 19 l = 1; 00158 00159 Now we've hit the breakpoint at shr1. (The breakpoint was 00160 reset from the PLT entry to the actual shr1 function after the 00161 shared library was loaded.) Note that the PLT entry has been 00162 resolved to contain a branch that takes us directly to shr1. 00163 (The real one, not the PLT entry.) 00164 00165 (gdb) x/2i 0x100409d4 00166 0x100409d4 <shr1>: b 0xffaf76c <shr1> 00167 0x100409d8 <shr1+4>: b 0x10040984 <sg+4> 00168 00169 The thing to note here is that the PLT entry for shr1 has been 00170 changed twice. 00171 00172 Now the problem should be obvious. GDB places a breakpoint (a 00173 trap instruction) on the zero value of the PLT entry for shr1. 00174 Later on, after the shared library had been loaded and the PLT 00175 initialized, GDB gets a signal indicating this fact and attempts 00176 (as it always does when it stops) to remove all the breakpoints. 00177 00178 The breakpoint removal was causing the former contents (a zero 00179 word) to be written back to the now initialized PLT entry thus 00180 destroying a portion of the initialization that had occurred only a 00181 short time ago. When execution continued, the zero word would be 00182 executed as an instruction an illegal instruction trap was 00183 generated instead. (0 is not a legal instruction.) 00184 00185 The fix for this problem was fairly straightforward. The function 00186 memory_remove_breakpoint from mem-break.c was copied to this file, 00187 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint. 00188 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new 00189 function. 00190 00191 The differences between ppc_linux_memory_remove_breakpoint () and 00192 memory_remove_breakpoint () are minor. All that the former does 00193 that the latter does not is check to make sure that the breakpoint 00194 location actually contains a breakpoint (trap instruction) prior 00195 to attempting to write back the old contents. If it does contain 00196 a trap instruction, we allow the old contents to be written back. 00197 Otherwise, we silently do nothing. 00198 00199 The big question is whether memory_remove_breakpoint () should be 00200 changed to have the same functionality. The downside is that more 00201 traffic is generated for remote targets since we'll have an extra 00202 fetch of a memory word each time a breakpoint is removed. 00203 00204 For the time being, we'll leave this self-modifying-code-friendly 00205 version in ppc-linux-tdep.c, but it ought to be migrated somewhere 00206 else in the event that some other platform has similar needs with 00207 regard to removing breakpoints in some potentially self modifying 00208 code. */ 00209 static int 00210 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch, 00211 struct bp_target_info *bp_tgt) 00212 { 00213 CORE_ADDR addr = bp_tgt->placed_address; 00214 const unsigned char *bp; 00215 int val; 00216 int bplen; 00217 gdb_byte old_contents[BREAKPOINT_MAX]; 00218 struct cleanup *cleanup; 00219 00220 /* Determine appropriate breakpoint contents and size for this address. */ 00221 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen); 00222 if (bp == NULL) 00223 error (_("Software breakpoints not implemented for this target.")); 00224 00225 /* Make sure we see the memory breakpoints. */ 00226 cleanup = make_show_memory_breakpoints_cleanup (1); 00227 val = target_read_memory (addr, old_contents, bplen); 00228 00229 /* If our breakpoint is no longer at the address, this means that the 00230 program modified the code on us, so it is wrong to put back the 00231 old value. */ 00232 if (val == 0 && memcmp (bp, old_contents, bplen) == 0) 00233 val = target_write_raw_memory (addr, bp_tgt->shadow_contents, bplen); 00234 00235 do_cleanups (cleanup); 00236 return val; 00237 } 00238 00239 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather 00240 than the 32 bit SYSV R4 ABI structure return convention - all 00241 structures, no matter their size, are put in memory. Vectors, 00242 which were added later, do get returned in a register though. */ 00243 00244 static enum return_value_convention 00245 ppc_linux_return_value (struct gdbarch *gdbarch, struct value *function, 00246 struct type *valtype, struct regcache *regcache, 00247 gdb_byte *readbuf, const gdb_byte *writebuf) 00248 { 00249 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT 00250 || TYPE_CODE (valtype) == TYPE_CODE_UNION) 00251 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8) 00252 && TYPE_VECTOR (valtype))) 00253 return RETURN_VALUE_STRUCT_CONVENTION; 00254 else 00255 return ppc_sysv_abi_return_value (gdbarch, function, valtype, regcache, 00256 readbuf, writebuf); 00257 } 00258 00259 static struct core_regset_section ppc_linux_vsx_regset_sections[] = 00260 { 00261 { ".reg", 48 * 4, "general-purpose" }, 00262 { ".reg2", 264, "floating-point" }, 00263 { ".reg-ppc-vmx", 544, "ppc Altivec" }, 00264 { ".reg-ppc-vsx", 256, "POWER7 VSX" }, 00265 { NULL, 0} 00266 }; 00267 00268 static struct core_regset_section ppc_linux_vmx_regset_sections[] = 00269 { 00270 { ".reg", 48 * 4, "general-purpose" }, 00271 { ".reg2", 264, "floating-point" }, 00272 { ".reg-ppc-vmx", 544, "ppc Altivec" }, 00273 { NULL, 0} 00274 }; 00275 00276 static struct core_regset_section ppc_linux_fp_regset_sections[] = 00277 { 00278 { ".reg", 48 * 4, "general-purpose" }, 00279 { ".reg2", 264, "floating-point" }, 00280 { NULL, 0} 00281 }; 00282 00283 static struct core_regset_section ppc64_linux_vsx_regset_sections[] = 00284 { 00285 { ".reg", 48 * 8, "general-purpose" }, 00286 { ".reg2", 264, "floating-point" }, 00287 { ".reg-ppc-vmx", 544, "ppc Altivec" }, 00288 { ".reg-ppc-vsx", 256, "POWER7 VSX" }, 00289 { NULL, 0} 00290 }; 00291 00292 static struct core_regset_section ppc64_linux_vmx_regset_sections[] = 00293 { 00294 { ".reg", 48 * 8, "general-purpose" }, 00295 { ".reg2", 264, "floating-point" }, 00296 { ".reg-ppc-vmx", 544, "ppc Altivec" }, 00297 { NULL, 0} 00298 }; 00299 00300 static struct core_regset_section ppc64_linux_fp_regset_sections[] = 00301 { 00302 { ".reg", 48 * 8, "general-purpose" }, 00303 { ".reg2", 264, "floating-point" }, 00304 { NULL, 0} 00305 }; 00306 00307 /* PLT stub in executable. */ 00308 static struct ppc_insn_pattern powerpc32_plt_stub[] = 00309 { 00310 { 0xffff0000, 0x3d600000, 0 }, /* lis r11, xxxx */ 00311 { 0xffff0000, 0x816b0000, 0 }, /* lwz r11, xxxx(r11) */ 00312 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */ 00313 { 0xffffffff, 0x4e800420, 0 }, /* bctr */ 00314 { 0, 0, 0 } 00315 }; 00316 00317 /* PLT stub in shared library. */ 00318 static struct ppc_insn_pattern powerpc32_plt_stub_so[] = 00319 { 00320 { 0xffff0000, 0x817e0000, 0 }, /* lwz r11, xxxx(r30) */ 00321 { 0xffffffff, 0x7d6903a6, 0 }, /* mtctr r11 */ 00322 { 0xffffffff, 0x4e800420, 0 }, /* bctr */ 00323 { 0xffffffff, 0x60000000, 0 }, /* nop */ 00324 { 0, 0, 0 } 00325 }; 00326 #define POWERPC32_PLT_STUB_LEN ARRAY_SIZE (powerpc32_plt_stub) 00327 00328 /* Check if PC is in PLT stub. For non-secure PLT, stub is in .plt 00329 section. For secure PLT, stub is in .text and we need to check 00330 instruction patterns. */ 00331 00332 static int 00333 powerpc_linux_in_dynsym_resolve_code (CORE_ADDR pc) 00334 { 00335 struct bound_minimal_symbol sym; 00336 00337 /* Check whether PC is in the dynamic linker. This also checks 00338 whether it is in the .plt section, used by non-PIC executables. */ 00339 if (svr4_in_dynsym_resolve_code (pc)) 00340 return 1; 00341 00342 /* Check if we are in the resolver. */ 00343 sym = lookup_minimal_symbol_by_pc (pc); 00344 if (sym.minsym != NULL 00345 && (strcmp (SYMBOL_LINKAGE_NAME (sym.minsym), "__glink") == 0 00346 || strcmp (SYMBOL_LINKAGE_NAME (sym.minsym), 00347 "__glink_PLTresolve") == 0)) 00348 return 1; 00349 00350 return 0; 00351 } 00352 00353 /* Follow PLT stub to actual routine. */ 00354 00355 static CORE_ADDR 00356 ppc_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) 00357 { 00358 unsigned int insnbuf[POWERPC32_PLT_STUB_LEN]; 00359 struct gdbarch *gdbarch = get_frame_arch (frame); 00360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 00361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00362 CORE_ADDR target = 0; 00363 00364 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub, insnbuf)) 00365 { 00366 /* Insn pattern is 00367 lis r11, xxxx 00368 lwz r11, xxxx(r11) 00369 Branch target is in r11. */ 00370 00371 target = (ppc_insn_d_field (insnbuf[0]) << 16) 00372 | ppc_insn_d_field (insnbuf[1]); 00373 target = read_memory_unsigned_integer (target, 4, byte_order); 00374 } 00375 00376 if (ppc_insns_match_pattern (frame, pc, powerpc32_plt_stub_so, insnbuf)) 00377 { 00378 /* Insn pattern is 00379 lwz r11, xxxx(r30) 00380 Branch target is in r11. */ 00381 00382 target = get_frame_register_unsigned (frame, tdep->ppc_gp0_regnum + 30) 00383 + ppc_insn_d_field (insnbuf[0]); 00384 target = read_memory_unsigned_integer (target, 4, byte_order); 00385 } 00386 00387 return target; 00388 } 00389 00390 /* Wrappers to handle Linux-only registers. */ 00391 00392 static void 00393 ppc_linux_supply_gregset (const struct regset *regset, 00394 struct regcache *regcache, 00395 int regnum, const void *gregs, size_t len) 00396 { 00397 const struct ppc_reg_offsets *offsets = regset->descr; 00398 00399 ppc_supply_gregset (regset, regcache, regnum, gregs, len); 00400 00401 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache))) 00402 { 00403 /* "orig_r3" is stored 2 slots after "pc". */ 00404 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM) 00405 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs, 00406 offsets->pc_offset + 2 * offsets->gpr_size, 00407 offsets->gpr_size); 00408 00409 /* "trap" is stored 8 slots after "pc". */ 00410 if (regnum == -1 || regnum == PPC_TRAP_REGNUM) 00411 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs, 00412 offsets->pc_offset + 8 * offsets->gpr_size, 00413 offsets->gpr_size); 00414 } 00415 } 00416 00417 static void 00418 ppc_linux_collect_gregset (const struct regset *regset, 00419 const struct regcache *regcache, 00420 int regnum, void *gregs, size_t len) 00421 { 00422 const struct ppc_reg_offsets *offsets = regset->descr; 00423 00424 /* Clear areas in the linux gregset not written elsewhere. */ 00425 if (regnum == -1) 00426 memset (gregs, 0, len); 00427 00428 ppc_collect_gregset (regset, regcache, regnum, gregs, len); 00429 00430 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache))) 00431 { 00432 /* "orig_r3" is stored 2 slots after "pc". */ 00433 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM) 00434 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs, 00435 offsets->pc_offset + 2 * offsets->gpr_size, 00436 offsets->gpr_size); 00437 00438 /* "trap" is stored 8 slots after "pc". */ 00439 if (regnum == -1 || regnum == PPC_TRAP_REGNUM) 00440 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs, 00441 offsets->pc_offset + 8 * offsets->gpr_size, 00442 offsets->gpr_size); 00443 } 00444 } 00445 00446 /* Regset descriptions. */ 00447 static const struct ppc_reg_offsets ppc32_linux_reg_offsets = 00448 { 00449 /* General-purpose registers. */ 00450 /* .r0_offset = */ 0, 00451 /* .gpr_size = */ 4, 00452 /* .xr_size = */ 4, 00453 /* .pc_offset = */ 128, 00454 /* .ps_offset = */ 132, 00455 /* .cr_offset = */ 152, 00456 /* .lr_offset = */ 144, 00457 /* .ctr_offset = */ 140, 00458 /* .xer_offset = */ 148, 00459 /* .mq_offset = */ 156, 00460 00461 /* Floating-point registers. */ 00462 /* .f0_offset = */ 0, 00463 /* .fpscr_offset = */ 256, 00464 /* .fpscr_size = */ 8, 00465 00466 /* AltiVec registers. */ 00467 /* .vr0_offset = */ 0, 00468 /* .vscr_offset = */ 512 + 12, 00469 /* .vrsave_offset = */ 528 00470 }; 00471 00472 static const struct ppc_reg_offsets ppc64_linux_reg_offsets = 00473 { 00474 /* General-purpose registers. */ 00475 /* .r0_offset = */ 0, 00476 /* .gpr_size = */ 8, 00477 /* .xr_size = */ 8, 00478 /* .pc_offset = */ 256, 00479 /* .ps_offset = */ 264, 00480 /* .cr_offset = */ 304, 00481 /* .lr_offset = */ 288, 00482 /* .ctr_offset = */ 280, 00483 /* .xer_offset = */ 296, 00484 /* .mq_offset = */ 312, 00485 00486 /* Floating-point registers. */ 00487 /* .f0_offset = */ 0, 00488 /* .fpscr_offset = */ 256, 00489 /* .fpscr_size = */ 8, 00490 00491 /* AltiVec registers. */ 00492 /* .vr0_offset = */ 0, 00493 /* .vscr_offset = */ 512 + 12, 00494 /* .vrsave_offset = */ 528 00495 }; 00496 00497 static const struct regset ppc32_linux_gregset = { 00498 &ppc32_linux_reg_offsets, 00499 ppc_linux_supply_gregset, 00500 ppc_linux_collect_gregset, 00501 NULL 00502 }; 00503 00504 static const struct regset ppc64_linux_gregset = { 00505 &ppc64_linux_reg_offsets, 00506 ppc_linux_supply_gregset, 00507 ppc_linux_collect_gregset, 00508 NULL 00509 }; 00510 00511 static const struct regset ppc32_linux_fpregset = { 00512 &ppc32_linux_reg_offsets, 00513 ppc_supply_fpregset, 00514 ppc_collect_fpregset, 00515 NULL 00516 }; 00517 00518 static const struct regset ppc32_linux_vrregset = { 00519 &ppc32_linux_reg_offsets, 00520 ppc_supply_vrregset, 00521 ppc_collect_vrregset, 00522 NULL 00523 }; 00524 00525 static const struct regset ppc32_linux_vsxregset = { 00526 &ppc32_linux_reg_offsets, 00527 ppc_supply_vsxregset, 00528 ppc_collect_vsxregset, 00529 NULL 00530 }; 00531 00532 const struct regset * 00533 ppc_linux_gregset (int wordsize) 00534 { 00535 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset; 00536 } 00537 00538 const struct regset * 00539 ppc_linux_fpregset (void) 00540 { 00541 return &ppc32_linux_fpregset; 00542 } 00543 00544 static const struct regset * 00545 ppc_linux_regset_from_core_section (struct gdbarch *core_arch, 00546 const char *sect_name, size_t sect_size) 00547 { 00548 struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch); 00549 if (strcmp (sect_name, ".reg") == 0) 00550 { 00551 if (tdep->wordsize == 4) 00552 return &ppc32_linux_gregset; 00553 else 00554 return &ppc64_linux_gregset; 00555 } 00556 if (strcmp (sect_name, ".reg2") == 0) 00557 return &ppc32_linux_fpregset; 00558 if (strcmp (sect_name, ".reg-ppc-vmx") == 0) 00559 return &ppc32_linux_vrregset; 00560 if (strcmp (sect_name, ".reg-ppc-vsx") == 0) 00561 return &ppc32_linux_vsxregset; 00562 return NULL; 00563 } 00564 00565 static void 00566 ppc_linux_sigtramp_cache (struct frame_info *this_frame, 00567 struct trad_frame_cache *this_cache, 00568 CORE_ADDR func, LONGEST offset, 00569 int bias) 00570 { 00571 CORE_ADDR base; 00572 CORE_ADDR regs; 00573 CORE_ADDR gpregs; 00574 CORE_ADDR fpregs; 00575 int i; 00576 struct gdbarch *gdbarch = get_frame_arch (this_frame); 00577 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 00578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00579 00580 base = get_frame_register_unsigned (this_frame, 00581 gdbarch_sp_regnum (gdbarch)); 00582 if (bias > 0 && get_frame_pc (this_frame) != func) 00583 /* See below, some signal trampolines increment the stack as their 00584 first instruction, need to compensate for that. */ 00585 base -= bias; 00586 00587 /* Find the address of the register buffer pointer. */ 00588 regs = base + offset; 00589 /* Use that to find the address of the corresponding register 00590 buffers. */ 00591 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order); 00592 fpregs = gpregs + 48 * tdep->wordsize; 00593 00594 /* General purpose. */ 00595 for (i = 0; i < 32; i++) 00596 { 00597 int regnum = i + tdep->ppc_gp0_regnum; 00598 trad_frame_set_reg_addr (this_cache, 00599 regnum, gpregs + i * tdep->wordsize); 00600 } 00601 trad_frame_set_reg_addr (this_cache, 00602 gdbarch_pc_regnum (gdbarch), 00603 gpregs + 32 * tdep->wordsize); 00604 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum, 00605 gpregs + 35 * tdep->wordsize); 00606 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum, 00607 gpregs + 36 * tdep->wordsize); 00608 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum, 00609 gpregs + 37 * tdep->wordsize); 00610 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum, 00611 gpregs + 38 * tdep->wordsize); 00612 00613 if (ppc_linux_trap_reg_p (gdbarch)) 00614 { 00615 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM, 00616 gpregs + 34 * tdep->wordsize); 00617 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM, 00618 gpregs + 40 * tdep->wordsize); 00619 } 00620 00621 if (ppc_floating_point_unit_p (gdbarch)) 00622 { 00623 /* Floating point registers. */ 00624 for (i = 0; i < 32; i++) 00625 { 00626 int regnum = i + gdbarch_fp0_regnum (gdbarch); 00627 trad_frame_set_reg_addr (this_cache, regnum, 00628 fpregs + i * tdep->wordsize); 00629 } 00630 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum, 00631 fpregs + 32 * tdep->wordsize); 00632 } 00633 trad_frame_set_id (this_cache, frame_id_build (base, func)); 00634 } 00635 00636 static void 00637 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self, 00638 struct frame_info *this_frame, 00639 struct trad_frame_cache *this_cache, 00640 CORE_ADDR func) 00641 { 00642 ppc_linux_sigtramp_cache (this_frame, this_cache, func, 00643 0xd0 /* Offset to ucontext_t. */ 00644 + 0x30 /* Offset to .reg. */, 00645 0); 00646 } 00647 00648 static void 00649 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self, 00650 struct frame_info *this_frame, 00651 struct trad_frame_cache *this_cache, 00652 CORE_ADDR func) 00653 { 00654 ppc_linux_sigtramp_cache (this_frame, this_cache, func, 00655 0x80 /* Offset to ucontext_t. */ 00656 + 0xe0 /* Offset to .reg. */, 00657 128); 00658 } 00659 00660 static void 00661 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self, 00662 struct frame_info *this_frame, 00663 struct trad_frame_cache *this_cache, 00664 CORE_ADDR func) 00665 { 00666 ppc_linux_sigtramp_cache (this_frame, this_cache, func, 00667 0x40 /* Offset to ucontext_t. */ 00668 + 0x1c /* Offset to .reg. */, 00669 0); 00670 } 00671 00672 static void 00673 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self, 00674 struct frame_info *this_frame, 00675 struct trad_frame_cache *this_cache, 00676 CORE_ADDR func) 00677 { 00678 ppc_linux_sigtramp_cache (this_frame, this_cache, func, 00679 0x80 /* Offset to struct sigcontext. */ 00680 + 0x38 /* Offset to .reg. */, 00681 128); 00682 } 00683 00684 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = { 00685 SIGTRAMP_FRAME, 00686 4, 00687 { 00688 { 0x380000ac, -1 }, /* li r0, 172 */ 00689 { 0x44000002, -1 }, /* sc */ 00690 { TRAMP_SENTINEL_INSN }, 00691 }, 00692 ppc32_linux_sigaction_cache_init 00693 }; 00694 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = { 00695 SIGTRAMP_FRAME, 00696 4, 00697 { 00698 { 0x38210080, -1 }, /* addi r1,r1,128 */ 00699 { 0x380000ac, -1 }, /* li r0, 172 */ 00700 { 0x44000002, -1 }, /* sc */ 00701 { TRAMP_SENTINEL_INSN }, 00702 }, 00703 ppc64_linux_sigaction_cache_init 00704 }; 00705 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = { 00706 SIGTRAMP_FRAME, 00707 4, 00708 { 00709 { 0x38000077, -1 }, /* li r0,119 */ 00710 { 0x44000002, -1 }, /* sc */ 00711 { TRAMP_SENTINEL_INSN }, 00712 }, 00713 ppc32_linux_sighandler_cache_init 00714 }; 00715 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = { 00716 SIGTRAMP_FRAME, 00717 4, 00718 { 00719 { 0x38210080, -1 }, /* addi r1,r1,128 */ 00720 { 0x38000077, -1 }, /* li r0,119 */ 00721 { 0x44000002, -1 }, /* sc */ 00722 { TRAMP_SENTINEL_INSN }, 00723 }, 00724 ppc64_linux_sighandler_cache_init 00725 }; 00726 00727 00728 /* Address to use for displaced stepping. When debugging a stand-alone 00729 SPU executable, entry_point_address () will point to an SPU local-store 00730 address and is thus not usable as displaced stepping location. We use 00731 the auxiliary vector to determine the PowerPC-side entry point address 00732 instead. */ 00733 00734 static CORE_ADDR ppc_linux_entry_point_addr = 0; 00735 00736 static void 00737 ppc_linux_inferior_created (struct target_ops *target, int from_tty) 00738 { 00739 ppc_linux_entry_point_addr = 0; 00740 } 00741 00742 static CORE_ADDR 00743 ppc_linux_displaced_step_location (struct gdbarch *gdbarch) 00744 { 00745 if (ppc_linux_entry_point_addr == 0) 00746 { 00747 CORE_ADDR addr; 00748 00749 /* Determine entry point from target auxiliary vector. */ 00750 if (target_auxv_search (¤t_target, AT_ENTRY, &addr) <= 0) 00751 error (_("Cannot find AT_ENTRY auxiliary vector entry.")); 00752 00753 /* Make certain that the address points at real code, and not a 00754 function descriptor. */ 00755 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, 00756 ¤t_target); 00757 00758 /* Inferior calls also use the entry point as a breakpoint location. 00759 We don't want displaced stepping to interfere with those 00760 breakpoints, so leave space. */ 00761 ppc_linux_entry_point_addr = addr + 2 * PPC_INSN_SIZE; 00762 } 00763 00764 return ppc_linux_entry_point_addr; 00765 } 00766 00767 00768 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */ 00769 int 00770 ppc_linux_trap_reg_p (struct gdbarch *gdbarch) 00771 { 00772 /* If we do not have a target description with registers, then 00773 the special registers will not be included in the register set. */ 00774 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch))) 00775 return 0; 00776 00777 /* If we do, then it is safe to check the size. */ 00778 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0 00779 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0; 00780 } 00781 00782 /* Return the current system call's number present in the 00783 r0 register. When the function fails, it returns -1. */ 00784 static LONGEST 00785 ppc_linux_get_syscall_number (struct gdbarch *gdbarch, 00786 ptid_t ptid) 00787 { 00788 struct regcache *regcache = get_thread_regcache (ptid); 00789 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 00790 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00791 struct cleanup *cleanbuf; 00792 /* The content of a register */ 00793 gdb_byte *buf; 00794 /* The result */ 00795 LONGEST ret; 00796 00797 /* Make sure we're in a 32- or 64-bit machine */ 00798 gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8); 00799 00800 buf = (gdb_byte *) xmalloc (tdep->wordsize * sizeof (gdb_byte)); 00801 00802 cleanbuf = make_cleanup (xfree, buf); 00803 00804 /* Getting the system call number from the register. 00805 When dealing with PowerPC architecture, this information 00806 is stored at 0th register. */ 00807 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf); 00808 00809 ret = extract_signed_integer (buf, tdep->wordsize, byte_order); 00810 do_cleanups (cleanbuf); 00811 00812 return ret; 00813 } 00814 00815 static void 00816 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc) 00817 { 00818 struct gdbarch *gdbarch = get_regcache_arch (regcache); 00819 00820 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc); 00821 00822 /* Set special TRAP register to -1 to prevent the kernel from 00823 messing with the PC we just installed, if we happen to be 00824 within an interrupted system call that the kernel wants to 00825 restart. 00826 00827 Note that after we return from the dummy call, the TRAP and 00828 ORIG_R3 registers will be automatically restored, and the 00829 kernel continues to restart the system call at this point. */ 00830 if (ppc_linux_trap_reg_p (gdbarch)) 00831 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1); 00832 } 00833 00834 static int 00835 ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data) 00836 { 00837 return strncmp (bfd_section_name (abfd, asect), "SPU/", 4) == 0; 00838 } 00839 00840 static const struct target_desc * 00841 ppc_linux_core_read_description (struct gdbarch *gdbarch, 00842 struct target_ops *target, 00843 bfd *abfd) 00844 { 00845 asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL); 00846 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx"); 00847 asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx"); 00848 asection *section = bfd_get_section_by_name (abfd, ".reg"); 00849 if (! section) 00850 return NULL; 00851 00852 switch (bfd_section_size (abfd, section)) 00853 { 00854 case 48 * 4: 00855 if (cell) 00856 return tdesc_powerpc_cell32l; 00857 else if (vsx) 00858 return tdesc_powerpc_vsx32l; 00859 else if (altivec) 00860 return tdesc_powerpc_altivec32l; 00861 else 00862 return tdesc_powerpc_32l; 00863 00864 case 48 * 8: 00865 if (cell) 00866 return tdesc_powerpc_cell64l; 00867 else if (vsx) 00868 return tdesc_powerpc_vsx64l; 00869 else if (altivec) 00870 return tdesc_powerpc_altivec64l; 00871 else 00872 return tdesc_powerpc_64l; 00873 00874 default: 00875 return NULL; 00876 } 00877 } 00878 00879 /* Implementation of `gdbarch_stap_is_single_operand', as defined in 00880 gdbarch.h. */ 00881 00882 static int 00883 ppc_stap_is_single_operand (struct gdbarch *gdbarch, const char *s) 00884 { 00885 return (*s == 'i' /* Literal number. */ 00886 || (isdigit (*s) && s[1] == '(' 00887 && isdigit (s[2])) /* Displacement. */ 00888 || (*s == '(' && isdigit (s[1])) /* Register indirection. */ 00889 || isdigit (*s)); /* Register value. */ 00890 } 00891 00892 /* Implementation of `gdbarch_stap_parse_special_token', as defined in 00893 gdbarch.h. */ 00894 00895 static int 00896 ppc_stap_parse_special_token (struct gdbarch *gdbarch, 00897 struct stap_parse_info *p) 00898 { 00899 if (isdigit (*p->arg)) 00900 { 00901 /* This temporary pointer is needed because we have to do a lookahead. 00902 We could be dealing with a register displacement, and in such case 00903 we would not need to do anything. */ 00904 const char *s = p->arg; 00905 char *regname; 00906 int len; 00907 struct stoken str; 00908 00909 while (isdigit (*s)) 00910 ++s; 00911 00912 if (*s == '(') 00913 { 00914 /* It is a register displacement indeed. Returning 0 means we are 00915 deferring the treatment of this case to the generic parser. */ 00916 return 0; 00917 } 00918 00919 len = s - p->arg; 00920 regname = alloca (len + 2); 00921 regname[0] = 'r'; 00922 00923 strncpy (regname + 1, p->arg, len); 00924 ++len; 00925 regname[len] = '\0'; 00926 00927 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1) 00928 error (_("Invalid register name `%s' on expression `%s'."), 00929 regname, p->saved_arg); 00930 00931 write_exp_elt_opcode (OP_REGISTER); 00932 str.ptr = regname; 00933 str.length = len; 00934 write_exp_string (str); 00935 write_exp_elt_opcode (OP_REGISTER); 00936 00937 p->arg = s; 00938 } 00939 else 00940 { 00941 /* All the other tokens should be handled correctly by the generic 00942 parser. */ 00943 return 0; 00944 } 00945 00946 return 1; 00947 } 00948 00949 /* Cell/B.E. active SPE context tracking support. */ 00950 00951 static struct objfile *spe_context_objfile = NULL; 00952 static CORE_ADDR spe_context_lm_addr = 0; 00953 static CORE_ADDR spe_context_offset = 0; 00954 00955 static ptid_t spe_context_cache_ptid; 00956 static CORE_ADDR spe_context_cache_address; 00957 00958 /* Hook into inferior_created, solib_loaded, and solib_unloaded observers 00959 to track whether we've loaded a version of libspe2 (as static or dynamic 00960 library) that provides the __spe_current_active_context variable. */ 00961 static void 00962 ppc_linux_spe_context_lookup (struct objfile *objfile) 00963 { 00964 struct minimal_symbol *sym; 00965 00966 if (!objfile) 00967 { 00968 spe_context_objfile = NULL; 00969 spe_context_lm_addr = 0; 00970 spe_context_offset = 0; 00971 spe_context_cache_ptid = minus_one_ptid; 00972 spe_context_cache_address = 0; 00973 return; 00974 } 00975 00976 sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile); 00977 if (sym) 00978 { 00979 spe_context_objfile = objfile; 00980 spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile); 00981 spe_context_offset = SYMBOL_VALUE_ADDRESS (sym); 00982 spe_context_cache_ptid = minus_one_ptid; 00983 spe_context_cache_address = 0; 00984 return; 00985 } 00986 } 00987 00988 static void 00989 ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty) 00990 { 00991 struct objfile *objfile; 00992 00993 ppc_linux_spe_context_lookup (NULL); 00994 ALL_OBJFILES (objfile) 00995 ppc_linux_spe_context_lookup (objfile); 00996 } 00997 00998 static void 00999 ppc_linux_spe_context_solib_loaded (struct so_list *so) 01000 { 01001 if (strstr (so->so_original_name, "/libspe") != NULL) 01002 { 01003 solib_read_symbols (so, 0); 01004 ppc_linux_spe_context_lookup (so->objfile); 01005 } 01006 } 01007 01008 static void 01009 ppc_linux_spe_context_solib_unloaded (struct so_list *so) 01010 { 01011 if (so->objfile == spe_context_objfile) 01012 ppc_linux_spe_context_lookup (NULL); 01013 } 01014 01015 /* Retrieve contents of the N'th element in the current thread's 01016 linked SPE context list into ID and NPC. Return the address of 01017 said context element, or 0 if not found. */ 01018 static CORE_ADDR 01019 ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order, 01020 int n, int *id, unsigned int *npc) 01021 { 01022 CORE_ADDR spe_context = 0; 01023 gdb_byte buf[16]; 01024 int i; 01025 01026 /* Quick exit if we have not found __spe_current_active_context. */ 01027 if (!spe_context_objfile) 01028 return 0; 01029 01030 /* Look up cached address of thread-local variable. */ 01031 if (!ptid_equal (spe_context_cache_ptid, inferior_ptid)) 01032 { 01033 struct target_ops *target = ¤t_target; 01034 volatile struct gdb_exception ex; 01035 01036 while (target && !target->to_get_thread_local_address) 01037 target = find_target_beneath (target); 01038 if (!target) 01039 return 0; 01040 01041 TRY_CATCH (ex, RETURN_MASK_ERROR) 01042 { 01043 /* We do not call target_translate_tls_address here, because 01044 svr4_fetch_objfile_link_map may invalidate the frame chain, 01045 which must not do while inside a frame sniffer. 01046 01047 Instead, we have cached the lm_addr value, and use that to 01048 directly call the target's to_get_thread_local_address. */ 01049 spe_context_cache_address 01050 = target->to_get_thread_local_address (target, inferior_ptid, 01051 spe_context_lm_addr, 01052 spe_context_offset); 01053 spe_context_cache_ptid = inferior_ptid; 01054 } 01055 01056 if (ex.reason < 0) 01057 return 0; 01058 } 01059 01060 /* Read variable value. */ 01061 if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0) 01062 spe_context = extract_unsigned_integer (buf, wordsize, byte_order); 01063 01064 /* Cyle through to N'th linked list element. */ 01065 for (i = 0; i < n && spe_context; i++) 01066 if (target_read_memory (spe_context + align_up (12, wordsize), 01067 buf, wordsize) == 0) 01068 spe_context = extract_unsigned_integer (buf, wordsize, byte_order); 01069 else 01070 spe_context = 0; 01071 01072 /* Read current context. */ 01073 if (spe_context 01074 && target_read_memory (spe_context, buf, 12) != 0) 01075 spe_context = 0; 01076 01077 /* Extract data elements. */ 01078 if (spe_context) 01079 { 01080 if (id) 01081 *id = extract_signed_integer (buf, 4, byte_order); 01082 if (npc) 01083 *npc = extract_unsigned_integer (buf + 4, 4, byte_order); 01084 } 01085 01086 return spe_context; 01087 } 01088 01089 01090 /* Cell/B.E. cross-architecture unwinder support. */ 01091 01092 struct ppu2spu_cache 01093 { 01094 struct frame_id frame_id; 01095 struct regcache *regcache; 01096 }; 01097 01098 static struct gdbarch * 01099 ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache) 01100 { 01101 struct ppu2spu_cache *cache = *this_cache; 01102 return get_regcache_arch (cache->regcache); 01103 } 01104 01105 static void 01106 ppu2spu_this_id (struct frame_info *this_frame, 01107 void **this_cache, struct frame_id *this_id) 01108 { 01109 struct ppu2spu_cache *cache = *this_cache; 01110 *this_id = cache->frame_id; 01111 } 01112 01113 static struct value * 01114 ppu2spu_prev_register (struct frame_info *this_frame, 01115 void **this_cache, int regnum) 01116 { 01117 struct ppu2spu_cache *cache = *this_cache; 01118 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache); 01119 gdb_byte *buf; 01120 01121 buf = alloca (register_size (gdbarch, regnum)); 01122 01123 if (regnum < gdbarch_num_regs (gdbarch)) 01124 regcache_raw_read (cache->regcache, regnum, buf); 01125 else 01126 gdbarch_pseudo_register_read (gdbarch, cache->regcache, regnum, buf); 01127 01128 return frame_unwind_got_bytes (this_frame, regnum, buf); 01129 } 01130 01131 struct ppu2spu_data 01132 { 01133 struct gdbarch *gdbarch; 01134 int id; 01135 unsigned int npc; 01136 gdb_byte gprs[128*16]; 01137 }; 01138 01139 static int 01140 ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf) 01141 { 01142 struct ppu2spu_data *data = src; 01143 enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch); 01144 01145 if (regnum >= 0 && regnum < SPU_NUM_GPRS) 01146 memcpy (buf, data->gprs + 16*regnum, 16); 01147 else if (regnum == SPU_ID_REGNUM) 01148 store_unsigned_integer (buf, 4, byte_order, data->id); 01149 else if (regnum == SPU_PC_REGNUM) 01150 store_unsigned_integer (buf, 4, byte_order, data->npc); 01151 else 01152 return REG_UNAVAILABLE; 01153 01154 return REG_VALID; 01155 } 01156 01157 static int 01158 ppu2spu_sniffer (const struct frame_unwind *self, 01159 struct frame_info *this_frame, void **this_prologue_cache) 01160 { 01161 struct gdbarch *gdbarch = get_frame_arch (this_frame); 01162 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 01163 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 01164 struct ppu2spu_data data; 01165 struct frame_info *fi; 01166 CORE_ADDR base, func, backchain, spe_context; 01167 gdb_byte buf[8]; 01168 int n = 0; 01169 01170 /* Count the number of SPU contexts already in the frame chain. */ 01171 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi)) 01172 if (get_frame_type (fi) == ARCH_FRAME 01173 && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu) 01174 n++; 01175 01176 base = get_frame_sp (this_frame); 01177 func = get_frame_pc (this_frame); 01178 if (target_read_memory (base, buf, tdep->wordsize)) 01179 return 0; 01180 backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order); 01181 01182 spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order, 01183 n, &data.id, &data.npc); 01184 if (spe_context && base <= spe_context && spe_context < backchain) 01185 { 01186 char annex[32]; 01187 01188 /* Find gdbarch for SPU. */ 01189 struct gdbarch_info info; 01190 gdbarch_info_init (&info); 01191 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu); 01192 info.byte_order = BFD_ENDIAN_BIG; 01193 info.osabi = GDB_OSABI_LINUX; 01194 info.tdep_info = (void *) &data.id; 01195 data.gdbarch = gdbarch_find_by_info (info); 01196 if (!data.gdbarch) 01197 return 0; 01198 01199 xsnprintf (annex, sizeof annex, "%d/regs", data.id); 01200 if (target_read (¤t_target, TARGET_OBJECT_SPU, annex, 01201 data.gprs, 0, sizeof data.gprs) 01202 == sizeof data.gprs) 01203 { 01204 struct ppu2spu_cache *cache 01205 = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache); 01206 01207 struct address_space *aspace = get_frame_address_space (this_frame); 01208 struct regcache *regcache = regcache_xmalloc (data.gdbarch, aspace); 01209 struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache); 01210 regcache_save (regcache, ppu2spu_unwind_register, &data); 01211 discard_cleanups (cleanups); 01212 01213 cache->frame_id = frame_id_build (base, func); 01214 cache->regcache = regcache; 01215 *this_prologue_cache = cache; 01216 return 1; 01217 } 01218 } 01219 01220 return 0; 01221 } 01222 01223 static void 01224 ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache) 01225 { 01226 struct ppu2spu_cache *cache = this_cache; 01227 regcache_xfree (cache->regcache); 01228 } 01229 01230 static const struct frame_unwind ppu2spu_unwind = { 01231 ARCH_FRAME, 01232 default_frame_unwind_stop_reason, 01233 ppu2spu_this_id, 01234 ppu2spu_prev_register, 01235 NULL, 01236 ppu2spu_sniffer, 01237 ppu2spu_dealloc_cache, 01238 ppu2spu_prev_arch, 01239 }; 01240 01241 01242 static void 01243 ppc_linux_init_abi (struct gdbarch_info info, 01244 struct gdbarch *gdbarch) 01245 { 01246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 01247 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info; 01248 01249 linux_init_abi (info, gdbarch); 01250 01251 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where 01252 128-bit, they are IBM long double, not IEEE quad long double as 01253 in the System V ABI PowerPC Processor Supplement. We can safely 01254 let them default to 128-bit, since the debug info will give the 01255 size of type actually used in each case. */ 01256 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); 01257 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double); 01258 01259 /* Handle inferior calls during interrupted system calls. */ 01260 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc); 01261 01262 /* Get the syscall number from the arch's register. */ 01263 set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number); 01264 01265 /* SystemTap functions. */ 01266 set_gdbarch_stap_integer_prefix (gdbarch, "i"); 01267 set_gdbarch_stap_register_indirection_prefix (gdbarch, "("); 01268 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")"); 01269 set_gdbarch_stap_gdb_register_prefix (gdbarch, "r"); 01270 set_gdbarch_stap_is_single_operand (gdbarch, ppc_stap_is_single_operand); 01271 set_gdbarch_stap_parse_special_token (gdbarch, 01272 ppc_stap_parse_special_token); 01273 01274 if (tdep->wordsize == 4) 01275 { 01276 /* Until November 2001, gcc did not comply with the 32 bit SysV 01277 R4 ABI requirement that structures less than or equal to 8 01278 bytes should be returned in registers. Instead GCC was using 01279 the AIX/PowerOpen ABI - everything returned in memory 01280 (well ignoring vectors that is). When this was corrected, it 01281 wasn't fixed for GNU/Linux native platform. Use the 01282 PowerOpen struct convention. */ 01283 set_gdbarch_return_value (gdbarch, ppc_linux_return_value); 01284 01285 set_gdbarch_memory_remove_breakpoint (gdbarch, 01286 ppc_linux_memory_remove_breakpoint); 01287 01288 /* Shared library handling. */ 01289 set_gdbarch_skip_trampoline_code (gdbarch, ppc_skip_trampoline_code); 01290 set_solib_svr4_fetch_link_map_offsets 01291 (gdbarch, svr4_ilp32_fetch_link_map_offsets); 01292 01293 /* Setting the correct XML syscall filename. */ 01294 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC); 01295 01296 /* Trampolines. */ 01297 tramp_frame_prepend_unwinder (gdbarch, 01298 &ppc32_linux_sigaction_tramp_frame); 01299 tramp_frame_prepend_unwinder (gdbarch, 01300 &ppc32_linux_sighandler_tramp_frame); 01301 01302 /* BFD target for core files. */ 01303 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) 01304 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle"); 01305 else 01306 set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc"); 01307 01308 /* Supported register sections. */ 01309 if (tdesc_find_feature (info.target_desc, 01310 "org.gnu.gdb.power.vsx")) 01311 set_gdbarch_core_regset_sections (gdbarch, 01312 ppc_linux_vsx_regset_sections); 01313 else if (tdesc_find_feature (info.target_desc, 01314 "org.gnu.gdb.power.altivec")) 01315 set_gdbarch_core_regset_sections (gdbarch, 01316 ppc_linux_vmx_regset_sections); 01317 else 01318 set_gdbarch_core_regset_sections (gdbarch, 01319 ppc_linux_fp_regset_sections); 01320 01321 if (powerpc_so_ops.in_dynsym_resolve_code == NULL) 01322 { 01323 powerpc_so_ops = svr4_so_ops; 01324 /* Override dynamic resolve function. */ 01325 powerpc_so_ops.in_dynsym_resolve_code = 01326 powerpc_linux_in_dynsym_resolve_code; 01327 } 01328 set_solib_ops (gdbarch, &powerpc_so_ops); 01329 01330 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver); 01331 } 01332 01333 if (tdep->wordsize == 8) 01334 { 01335 /* Handle PPC GNU/Linux 64-bit function pointers (which are really 01336 function descriptors). */ 01337 set_gdbarch_convert_from_func_ptr_addr 01338 (gdbarch, ppc64_convert_from_func_ptr_addr); 01339 01340 set_gdbarch_elf_make_msymbol_special (gdbarch, 01341 ppc64_elf_make_msymbol_special); 01342 01343 /* Shared library handling. */ 01344 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code); 01345 set_solib_svr4_fetch_link_map_offsets 01346 (gdbarch, svr4_lp64_fetch_link_map_offsets); 01347 01348 /* Setting the correct XML syscall filename. */ 01349 set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC64); 01350 01351 /* Trampolines. */ 01352 tramp_frame_prepend_unwinder (gdbarch, 01353 &ppc64_linux_sigaction_tramp_frame); 01354 tramp_frame_prepend_unwinder (gdbarch, 01355 &ppc64_linux_sighandler_tramp_frame); 01356 01357 /* BFD target for core files. */ 01358 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) 01359 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle"); 01360 else 01361 set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc"); 01362 01363 /* Supported register sections. */ 01364 if (tdesc_find_feature (info.target_desc, 01365 "org.gnu.gdb.power.vsx")) 01366 set_gdbarch_core_regset_sections (gdbarch, 01367 ppc64_linux_vsx_regset_sections); 01368 else if (tdesc_find_feature (info.target_desc, 01369 "org.gnu.gdb.power.altivec")) 01370 set_gdbarch_core_regset_sections (gdbarch, 01371 ppc64_linux_vmx_regset_sections); 01372 else 01373 set_gdbarch_core_regset_sections (gdbarch, 01374 ppc64_linux_fp_regset_sections); 01375 } 01376 01377 /* PPC32 uses a different prpsinfo32 compared to most other Linux 01378 archs. */ 01379 if (tdep->wordsize == 4) 01380 set_gdbarch_elfcore_write_linux_prpsinfo (gdbarch, 01381 elfcore_write_ppc_linux_prpsinfo32); 01382 01383 set_gdbarch_regset_from_core_section (gdbarch, 01384 ppc_linux_regset_from_core_section); 01385 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description); 01386 01387 /* Enable TLS support. */ 01388 set_gdbarch_fetch_tls_load_module_address (gdbarch, 01389 svr4_fetch_objfile_link_map); 01390 01391 if (tdesc_data) 01392 { 01393 const struct tdesc_feature *feature; 01394 01395 /* If we have target-described registers, then we can safely 01396 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM 01397 (whether they are described or not). */ 01398 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM); 01399 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1); 01400 01401 /* If they are present, then assign them to the reserved number. */ 01402 feature = tdesc_find_feature (info.target_desc, 01403 "org.gnu.gdb.power.linux"); 01404 if (feature != NULL) 01405 { 01406 tdesc_numbered_register (feature, tdesc_data, 01407 PPC_ORIG_R3_REGNUM, "orig_r3"); 01408 tdesc_numbered_register (feature, tdesc_data, 01409 PPC_TRAP_REGNUM, "trap"); 01410 } 01411 } 01412 01413 /* Enable Cell/B.E. if supported by the target. */ 01414 if (tdesc_compatible_p (info.target_desc, 01415 bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu))) 01416 { 01417 /* Cell/B.E. multi-architecture support. */ 01418 set_spu_solib_ops (gdbarch); 01419 01420 /* Cell/B.E. cross-architecture unwinder support. */ 01421 frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind); 01422 01423 /* The default displaced_step_at_entry_point doesn't work for 01424 SPU stand-alone executables. */ 01425 set_gdbarch_displaced_step_location (gdbarch, 01426 ppc_linux_displaced_step_location); 01427 } 01428 01429 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type); 01430 } 01431 01432 /* Provide a prototype to silence -Wmissing-prototypes. */ 01433 extern initialize_file_ftype _initialize_ppc_linux_tdep; 01434 01435 void 01436 _initialize_ppc_linux_tdep (void) 01437 { 01438 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and 01439 64-bit PowerPC, and the older rs6k. */ 01440 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX, 01441 ppc_linux_init_abi); 01442 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX, 01443 ppc_linux_init_abi); 01444 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX, 01445 ppc_linux_init_abi); 01446 01447 /* Attach to inferior_created observer. */ 01448 observer_attach_inferior_created (ppc_linux_inferior_created); 01449 01450 /* Attach to observers to track __spe_current_active_context. */ 01451 observer_attach_inferior_created (ppc_linux_spe_context_inferior_created); 01452 observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded); 01453 observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded); 01454 01455 /* Initialize the Linux target descriptions. */ 01456 initialize_tdesc_powerpc_32l (); 01457 initialize_tdesc_powerpc_altivec32l (); 01458 initialize_tdesc_powerpc_cell32l (); 01459 initialize_tdesc_powerpc_vsx32l (); 01460 initialize_tdesc_powerpc_isa205_32l (); 01461 initialize_tdesc_powerpc_isa205_altivec32l (); 01462 initialize_tdesc_powerpc_isa205_vsx32l (); 01463 initialize_tdesc_powerpc_64l (); 01464 initialize_tdesc_powerpc_altivec64l (); 01465 initialize_tdesc_powerpc_cell64l (); 01466 initialize_tdesc_powerpc_vsx64l (); 01467 initialize_tdesc_powerpc_isa205_64l (); 01468 initialize_tdesc_powerpc_isa205_altivec64l (); 01469 initialize_tdesc_powerpc_isa205_vsx64l (); 01470 initialize_tdesc_powerpc_e500l (); 01471 }