GDB (API)
|
00001 /* Target-dependent code for Renesas M32R, for GDB. 00002 00003 Copyright (C) 1996-2013 Free Software Foundation, Inc. 00004 00005 This file is part of GDB. 00006 00007 This program is free software; you can redistribute it and/or modify 00008 it under the terms of the GNU General Public License as published by 00009 the Free Software Foundation; either version 3 of the License, or 00010 (at your option) any later version. 00011 00012 This program is distributed in the hope that it will be useful, 00013 but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 GNU General Public License for more details. 00016 00017 You should have received a copy of the GNU General Public License 00018 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 00019 00020 #include "defs.h" 00021 #include "frame.h" 00022 #include "frame-unwind.h" 00023 #include "frame-base.h" 00024 #include "symtab.h" 00025 #include "gdbtypes.h" 00026 #include "gdbcmd.h" 00027 #include "gdbcore.h" 00028 #include "gdb_string.h" 00029 #include "value.h" 00030 #include "inferior.h" 00031 #include "symfile.h" 00032 #include "objfiles.h" 00033 #include "osabi.h" 00034 #include "language.h" 00035 #include "arch-utils.h" 00036 #include "regcache.h" 00037 #include "trad-frame.h" 00038 #include "dis-asm.h" 00039 00040 #include "gdb_assert.h" 00041 00042 #include "m32r-tdep.h" 00043 00044 /* Local functions */ 00045 00046 extern void _initialize_m32r_tdep (void); 00047 00048 static CORE_ADDR 00049 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) 00050 { 00051 /* Align to the size of an instruction (so that they can safely be 00052 pushed onto the stack. */ 00053 return sp & ~3; 00054 } 00055 00056 00057 /* Breakpoints 00058 00059 The little endian mode of M32R is unique. In most of architectures, 00060 two 16-bit instructions, A and B, are placed as the following: 00061 00062 Big endian: 00063 A0 A1 B0 B1 00064 00065 Little endian: 00066 A1 A0 B1 B0 00067 00068 In M32R, they are placed like this: 00069 00070 Big endian: 00071 A0 A1 B0 B1 00072 00073 Little endian: 00074 B1 B0 A1 A0 00075 00076 This is because M32R always fetches instructions in 32-bit. 00077 00078 The following functions take care of this behavior. */ 00079 00080 static int 00081 m32r_memory_insert_breakpoint (struct gdbarch *gdbarch, 00082 struct bp_target_info *bp_tgt) 00083 { 00084 CORE_ADDR addr = bp_tgt->placed_address; 00085 int val; 00086 gdb_byte buf[4]; 00087 gdb_byte contents_cache[4]; 00088 gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */ 00089 00090 /* Save the memory contents. */ 00091 val = target_read_memory (addr & 0xfffffffc, contents_cache, 4); 00092 if (val != 0) 00093 return val; /* return error */ 00094 00095 memcpy (bp_tgt->shadow_contents, contents_cache, 4); 00096 bp_tgt->placed_size = bp_tgt->shadow_len = 4; 00097 00098 /* Determine appropriate breakpoint contents and size for this address. */ 00099 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 00100 { 00101 if ((addr & 3) == 0) 00102 { 00103 buf[0] = bp_entry[0]; 00104 buf[1] = bp_entry[1]; 00105 buf[2] = contents_cache[2] & 0x7f; 00106 buf[3] = contents_cache[3]; 00107 } 00108 else 00109 { 00110 buf[0] = contents_cache[0]; 00111 buf[1] = contents_cache[1]; 00112 buf[2] = bp_entry[0]; 00113 buf[3] = bp_entry[1]; 00114 } 00115 } 00116 else /* little-endian */ 00117 { 00118 if ((addr & 3) == 0) 00119 { 00120 buf[0] = contents_cache[0]; 00121 buf[1] = contents_cache[1] & 0x7f; 00122 buf[2] = bp_entry[1]; 00123 buf[3] = bp_entry[0]; 00124 } 00125 else 00126 { 00127 buf[0] = bp_entry[1]; 00128 buf[1] = bp_entry[0]; 00129 buf[2] = contents_cache[2]; 00130 buf[3] = contents_cache[3]; 00131 } 00132 } 00133 00134 /* Write the breakpoint. */ 00135 val = target_write_memory (addr & 0xfffffffc, buf, 4); 00136 return val; 00137 } 00138 00139 static int 00140 m32r_memory_remove_breakpoint (struct gdbarch *gdbarch, 00141 struct bp_target_info *bp_tgt) 00142 { 00143 CORE_ADDR addr = bp_tgt->placed_address; 00144 int val; 00145 gdb_byte buf[4]; 00146 gdb_byte *contents_cache = bp_tgt->shadow_contents; 00147 00148 buf[0] = contents_cache[0]; 00149 buf[1] = contents_cache[1]; 00150 buf[2] = contents_cache[2]; 00151 buf[3] = contents_cache[3]; 00152 00153 /* Remove parallel bit. */ 00154 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 00155 { 00156 if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0) 00157 buf[2] &= 0x7f; 00158 } 00159 else /* little-endian */ 00160 { 00161 if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0) 00162 buf[1] &= 0x7f; 00163 } 00164 00165 /* Write contents. */ 00166 val = target_write_raw_memory (addr & 0xfffffffc, buf, 4); 00167 return val; 00168 } 00169 00170 static const gdb_byte * 00171 m32r_breakpoint_from_pc (struct gdbarch *gdbarch, 00172 CORE_ADDR *pcptr, int *lenptr) 00173 { 00174 static gdb_byte be_bp_entry[] = { 00175 0x10, 0xf1, 0x70, 0x00 00176 }; /* dpt -> nop */ 00177 static gdb_byte le_bp_entry[] = { 00178 0x00, 0x70, 0xf1, 0x10 00179 }; /* dpt -> nop */ 00180 gdb_byte *bp; 00181 00182 /* Determine appropriate breakpoint. */ 00183 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 00184 { 00185 if ((*pcptr & 3) == 0) 00186 { 00187 bp = be_bp_entry; 00188 *lenptr = 4; 00189 } 00190 else 00191 { 00192 bp = be_bp_entry; 00193 *lenptr = 2; 00194 } 00195 } 00196 else 00197 { 00198 if ((*pcptr & 3) == 0) 00199 { 00200 bp = le_bp_entry; 00201 *lenptr = 4; 00202 } 00203 else 00204 { 00205 bp = le_bp_entry + 2; 00206 *lenptr = 2; 00207 } 00208 } 00209 00210 return bp; 00211 } 00212 00213 00214 char *m32r_register_names[] = { 00215 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 00216 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", 00217 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", 00218 "evb" 00219 }; 00220 00221 static const char * 00222 m32r_register_name (struct gdbarch *gdbarch, int reg_nr) 00223 { 00224 if (reg_nr < 0) 00225 return NULL; 00226 if (reg_nr >= M32R_NUM_REGS) 00227 return NULL; 00228 return m32r_register_names[reg_nr]; 00229 } 00230 00231 00232 /* Return the GDB type object for the "standard" data type 00233 of data in register N. */ 00234 00235 static struct type * 00236 m32r_register_type (struct gdbarch *gdbarch, int reg_nr) 00237 { 00238 if (reg_nr == M32R_PC_REGNUM) 00239 return builtin_type (gdbarch)->builtin_func_ptr; 00240 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) 00241 return builtin_type (gdbarch)->builtin_data_ptr; 00242 else 00243 return builtin_type (gdbarch)->builtin_int32; 00244 } 00245 00246 00247 /* Write into appropriate registers a function return value 00248 of type TYPE, given in virtual format. 00249 00250 Things always get returned in RET1_REGNUM, RET2_REGNUM. */ 00251 00252 static void 00253 m32r_store_return_value (struct type *type, struct regcache *regcache, 00254 const void *valbuf) 00255 { 00256 struct gdbarch *gdbarch = get_regcache_arch (regcache); 00257 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00258 CORE_ADDR regval; 00259 int len = TYPE_LENGTH (type); 00260 00261 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); 00262 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); 00263 00264 if (len > 4) 00265 { 00266 regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4, 00267 len - 4, byte_order); 00268 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); 00269 } 00270 } 00271 00272 /* This is required by skip_prologue. The results of decoding a prologue 00273 should be cached because this thrashing is getting nuts. */ 00274 00275 static int 00276 decode_prologue (struct gdbarch *gdbarch, 00277 CORE_ADDR start_pc, CORE_ADDR scan_limit, 00278 CORE_ADDR *pl_endptr, unsigned long *framelength) 00279 { 00280 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00281 unsigned long framesize; 00282 int insn; 00283 int op1; 00284 CORE_ADDR after_prologue = 0; 00285 CORE_ADDR after_push = 0; 00286 CORE_ADDR after_stack_adjust = 0; 00287 CORE_ADDR current_pc; 00288 LONGEST return_value; 00289 00290 framesize = 0; 00291 after_prologue = 0; 00292 00293 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) 00294 { 00295 /* Check if current pc's location is readable. */ 00296 if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value)) 00297 return -1; 00298 00299 insn = read_memory_unsigned_integer (current_pc, 2, byte_order); 00300 00301 if (insn == 0x0000) 00302 break; 00303 00304 /* If this is a 32 bit instruction, we dont want to examine its 00305 immediate data as though it were an instruction. */ 00306 if (current_pc & 0x02) 00307 { 00308 /* Decode this instruction further. */ 00309 insn &= 0x7fff; 00310 } 00311 else 00312 { 00313 if (insn & 0x8000) 00314 { 00315 if (current_pc == scan_limit) 00316 scan_limit += 2; /* extend the search */ 00317 00318 current_pc += 2; /* skip the immediate data */ 00319 00320 /* Check if current pc's location is readable. */ 00321 if (!safe_read_memory_integer (current_pc, 2, byte_order, 00322 &return_value)) 00323 return -1; 00324 00325 if (insn == 0x8faf) /* add3 sp, sp, xxxx */ 00326 /* add 16 bit sign-extended offset */ 00327 { 00328 framesize += 00329 -((short) read_memory_unsigned_integer (current_pc, 00330 2, byte_order)); 00331 } 00332 else 00333 { 00334 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ 00335 && safe_read_memory_integer (current_pc + 2, 00336 2, byte_order, 00337 &return_value) 00338 && read_memory_unsigned_integer (current_pc + 2, 00339 2, byte_order) 00340 == 0x0f24) 00341 { 00342 /* Subtract 24 bit sign-extended negative-offset. */ 00343 insn = read_memory_unsigned_integer (current_pc - 2, 00344 4, byte_order); 00345 if (insn & 0x00800000) /* sign extend */ 00346 insn |= 0xff000000; /* negative */ 00347 else 00348 insn &= 0x00ffffff; /* positive */ 00349 framesize += insn; 00350 } 00351 } 00352 after_push = current_pc + 2; 00353 continue; 00354 } 00355 } 00356 op1 = insn & 0xf000; /* Isolate just the first nibble. */ 00357 00358 if ((insn & 0xf0ff) == 0x207f) 00359 { /* st reg, @-sp */ 00360 int regno; 00361 framesize += 4; 00362 regno = ((insn >> 8) & 0xf); 00363 after_prologue = 0; 00364 continue; 00365 } 00366 if ((insn >> 8) == 0x4f) /* addi sp, xx */ 00367 /* Add 8 bit sign-extended offset. */ 00368 { 00369 int stack_adjust = (signed char) (insn & 0xff); 00370 00371 /* there are probably two of these stack adjustments: 00372 1) A negative one in the prologue, and 00373 2) A positive one in the epilogue. 00374 We are only interested in the first one. */ 00375 00376 if (stack_adjust < 0) 00377 { 00378 framesize -= stack_adjust; 00379 after_prologue = 0; 00380 /* A frameless function may have no "mv fp, sp". 00381 In that case, this is the end of the prologue. */ 00382 after_stack_adjust = current_pc + 2; 00383 } 00384 continue; 00385 } 00386 if (insn == 0x1d8f) 00387 { /* mv fp, sp */ 00388 after_prologue = current_pc + 2; 00389 break; /* end of stack adjustments */ 00390 } 00391 00392 /* Nop looks like a branch, continue explicitly. */ 00393 if (insn == 0x7000) 00394 { 00395 after_prologue = current_pc + 2; 00396 continue; /* nop occurs between pushes. */ 00397 } 00398 /* End of prolog if any of these are trap instructions. */ 00399 if ((insn & 0xfff0) == 0x10f0) 00400 { 00401 after_prologue = current_pc; 00402 break; 00403 } 00404 /* End of prolog if any of these are branch instructions. */ 00405 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) 00406 { 00407 after_prologue = current_pc; 00408 continue; 00409 } 00410 /* Some of the branch instructions are mixed with other types. */ 00411 if (op1 == 0x1000) 00412 { 00413 int subop = insn & 0x0ff0; 00414 if ((subop == 0x0ec0) || (subop == 0x0fc0)) 00415 { 00416 after_prologue = current_pc; 00417 continue; /* jmp , jl */ 00418 } 00419 } 00420 } 00421 00422 if (framelength) 00423 *framelength = framesize; 00424 00425 if (current_pc >= scan_limit) 00426 { 00427 if (pl_endptr) 00428 { 00429 if (after_stack_adjust != 0) 00430 /* We did not find a "mv fp,sp", but we DID find 00431 a stack_adjust. Is it safe to use that as the 00432 end of the prologue? I just don't know. */ 00433 { 00434 *pl_endptr = after_stack_adjust; 00435 } 00436 else if (after_push != 0) 00437 /* We did not find a "mv fp,sp", but we DID find 00438 a push. Is it safe to use that as the 00439 end of the prologue? I just don't know. */ 00440 { 00441 *pl_endptr = after_push; 00442 } 00443 else 00444 /* We reached the end of the loop without finding the end 00445 of the prologue. No way to win -- we should report 00446 failure. The way we do that is to return the original 00447 start_pc. GDB will set a breakpoint at the start of 00448 the function (etc.) */ 00449 *pl_endptr = start_pc; 00450 } 00451 return 0; 00452 } 00453 00454 if (after_prologue == 0) 00455 after_prologue = current_pc; 00456 00457 if (pl_endptr) 00458 *pl_endptr = after_prologue; 00459 00460 return 0; 00461 } /* decode_prologue */ 00462 00463 /* Function: skip_prologue 00464 Find end of function prologue. */ 00465 00466 #define DEFAULT_SEARCH_LIMIT 128 00467 00468 static CORE_ADDR 00469 m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 00470 { 00471 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00472 CORE_ADDR func_addr, func_end; 00473 struct symtab_and_line sal; 00474 LONGEST return_value; 00475 00476 /* See what the symbol table says. */ 00477 00478 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 00479 { 00480 sal = find_pc_line (func_addr, 0); 00481 00482 if (sal.line != 0 && sal.end <= func_end) 00483 { 00484 func_end = sal.end; 00485 } 00486 else 00487 /* Either there's no line info, or the line after the prologue is after 00488 the end of the function. In this case, there probably isn't a 00489 prologue. */ 00490 { 00491 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); 00492 } 00493 } 00494 else 00495 func_end = pc + DEFAULT_SEARCH_LIMIT; 00496 00497 /* If pc's location is not readable, just quit. */ 00498 if (!safe_read_memory_integer (pc, 4, byte_order, &return_value)) 00499 return pc; 00500 00501 /* Find the end of prologue. */ 00502 if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0) 00503 return pc; 00504 00505 return sal.end; 00506 } 00507 00508 struct m32r_unwind_cache 00509 { 00510 /* The previous frame's inner most stack address. Used as this 00511 frame ID's stack_addr. */ 00512 CORE_ADDR prev_sp; 00513 /* The frame's base, optionally used by the high-level debug info. */ 00514 CORE_ADDR base; 00515 int size; 00516 /* How far the SP and r13 (FP) have been offset from the start of 00517 the stack frame (as defined by the previous frame's stack 00518 pointer). */ 00519 LONGEST sp_offset; 00520 LONGEST r13_offset; 00521 int uses_frame; 00522 /* Table indicating the location of each and every register. */ 00523 struct trad_frame_saved_reg *saved_regs; 00524 }; 00525 00526 /* Put here the code to store, into fi->saved_regs, the addresses of 00527 the saved registers of frame described by FRAME_INFO. This 00528 includes special registers such as pc and fp saved in special ways 00529 in the stack frame. sp is even more special: the address we return 00530 for it IS the sp for the next frame. */ 00531 00532 static struct m32r_unwind_cache * 00533 m32r_frame_unwind_cache (struct frame_info *this_frame, 00534 void **this_prologue_cache) 00535 { 00536 CORE_ADDR pc, scan_limit; 00537 ULONGEST prev_sp; 00538 ULONGEST this_base; 00539 unsigned long op; 00540 int i; 00541 struct m32r_unwind_cache *info; 00542 00543 00544 if ((*this_prologue_cache)) 00545 return (*this_prologue_cache); 00546 00547 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); 00548 (*this_prologue_cache) = info; 00549 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 00550 00551 info->size = 0; 00552 info->sp_offset = 0; 00553 info->uses_frame = 0; 00554 00555 scan_limit = get_frame_pc (this_frame); 00556 for (pc = get_frame_func (this_frame); 00557 pc > 0 && pc < scan_limit; pc += 2) 00558 { 00559 if ((pc & 2) == 0) 00560 { 00561 op = get_frame_memory_unsigned (this_frame, pc, 4); 00562 if ((op & 0x80000000) == 0x80000000) 00563 { 00564 /* 32-bit instruction */ 00565 if ((op & 0xffff0000) == 0x8faf0000) 00566 { 00567 /* add3 sp,sp,xxxx */ 00568 short n = op & 0xffff; 00569 info->sp_offset += n; 00570 } 00571 else if (((op >> 8) == 0xe4) 00572 && get_frame_memory_unsigned (this_frame, pc + 2, 00573 2) == 0x0f24) 00574 { 00575 /* ld24 r4, xxxxxx; sub sp, r4 */ 00576 unsigned long n = op & 0xffffff; 00577 info->sp_offset += n; 00578 pc += 2; /* skip sub instruction */ 00579 } 00580 00581 if (pc == scan_limit) 00582 scan_limit += 2; /* extend the search */ 00583 pc += 2; /* skip the immediate data */ 00584 continue; 00585 } 00586 } 00587 00588 /* 16-bit instructions */ 00589 op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff; 00590 if ((op & 0xf0ff) == 0x207f) 00591 { 00592 /* st rn, @-sp */ 00593 int regno = ((op >> 8) & 0xf); 00594 info->sp_offset -= 4; 00595 info->saved_regs[regno].addr = info->sp_offset; 00596 } 00597 else if ((op & 0xff00) == 0x4f00) 00598 { 00599 /* addi sp, xx */ 00600 int n = (signed char) (op & 0xff); 00601 info->sp_offset += n; 00602 } 00603 else if (op == 0x1d8f) 00604 { 00605 /* mv fp, sp */ 00606 info->uses_frame = 1; 00607 info->r13_offset = info->sp_offset; 00608 break; /* end of stack adjustments */ 00609 } 00610 else if ((op & 0xfff0) == 0x10f0) 00611 { 00612 /* End of prologue if this is a trap instruction. */ 00613 break; /* End of stack adjustments. */ 00614 } 00615 } 00616 00617 info->size = -info->sp_offset; 00618 00619 /* Compute the previous frame's stack pointer (which is also the 00620 frame's ID's stack address), and this frame's base pointer. */ 00621 if (info->uses_frame) 00622 { 00623 /* The SP was moved to the FP. This indicates that a new frame 00624 was created. Get THIS frame's FP value by unwinding it from 00625 the next frame. */ 00626 this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM); 00627 /* The FP points at the last saved register. Adjust the FP back 00628 to before the first saved register giving the SP. */ 00629 prev_sp = this_base + info->size; 00630 } 00631 else 00632 { 00633 /* Assume that the FP is this frame's SP but with that pushed 00634 stack space added back. */ 00635 this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); 00636 prev_sp = this_base + info->size; 00637 } 00638 00639 /* Convert that SP/BASE into real addresses. */ 00640 info->prev_sp = prev_sp; 00641 info->base = this_base; 00642 00643 /* Adjust all the saved registers so that they contain addresses and 00644 not offsets. */ 00645 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) 00646 if (trad_frame_addr_p (info->saved_regs, i)) 00647 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); 00648 00649 /* The call instruction moves the caller's PC in the callee's LR. 00650 Since this is an unwind, do the reverse. Copy the location of LR 00651 into PC (the address / regnum) so that a request for PC will be 00652 converted into a request for the LR. */ 00653 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; 00654 00655 /* The previous frame's SP needed to be computed. Save the computed 00656 value. */ 00657 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp); 00658 00659 return info; 00660 } 00661 00662 static CORE_ADDR 00663 m32r_read_pc (struct regcache *regcache) 00664 { 00665 ULONGEST pc; 00666 regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc); 00667 return pc; 00668 } 00669 00670 static CORE_ADDR 00671 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) 00672 { 00673 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); 00674 } 00675 00676 00677 static CORE_ADDR 00678 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 00679 struct regcache *regcache, CORE_ADDR bp_addr, int nargs, 00680 struct value **args, CORE_ADDR sp, int struct_return, 00681 CORE_ADDR struct_addr) 00682 { 00683 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00684 int stack_offset, stack_alloc; 00685 int argreg = ARG1_REGNUM; 00686 int argnum; 00687 struct type *type; 00688 enum type_code typecode; 00689 CORE_ADDR regval; 00690 gdb_byte *val; 00691 gdb_byte valbuf[MAX_REGISTER_SIZE]; 00692 int len; 00693 00694 /* First force sp to a 4-byte alignment. */ 00695 sp = sp & ~3; 00696 00697 /* Set the return address. For the m32r, the return breakpoint is 00698 always at BP_ADDR. */ 00699 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); 00700 00701 /* If STRUCT_RETURN is true, then the struct return address (in 00702 STRUCT_ADDR) will consume the first argument-passing register. 00703 Both adjust the register count and store that value. */ 00704 if (struct_return) 00705 { 00706 regcache_cooked_write_unsigned (regcache, argreg, struct_addr); 00707 argreg++; 00708 } 00709 00710 /* Now make sure there's space on the stack. */ 00711 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) 00712 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3); 00713 sp -= stack_alloc; /* Make room on stack for args. */ 00714 00715 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) 00716 { 00717 type = value_type (args[argnum]); 00718 typecode = TYPE_CODE (type); 00719 len = TYPE_LENGTH (type); 00720 00721 memset (valbuf, 0, sizeof (valbuf)); 00722 00723 /* Passes structures that do not fit in 2 registers by reference. */ 00724 if (len > 8 00725 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) 00726 { 00727 store_unsigned_integer (valbuf, 4, byte_order, 00728 value_address (args[argnum])); 00729 typecode = TYPE_CODE_PTR; 00730 len = 4; 00731 val = valbuf; 00732 } 00733 else if (len < 4) 00734 { 00735 /* Value gets right-justified in the register or stack word. */ 00736 memcpy (valbuf + (register_size (gdbarch, argreg) - len), 00737 (gdb_byte *) value_contents (args[argnum]), len); 00738 val = valbuf; 00739 } 00740 else 00741 val = (gdb_byte *) value_contents (args[argnum]); 00742 00743 while (len > 0) 00744 { 00745 if (argreg > ARGN_REGNUM) 00746 { 00747 /* Must go on the stack. */ 00748 write_memory (sp + stack_offset, val, 4); 00749 stack_offset += 4; 00750 } 00751 else if (argreg <= ARGN_REGNUM) 00752 { 00753 /* There's room in a register. */ 00754 regval = 00755 extract_unsigned_integer (val, 00756 register_size (gdbarch, argreg), 00757 byte_order); 00758 regcache_cooked_write_unsigned (regcache, argreg++, regval); 00759 } 00760 00761 /* Store the value 4 bytes at a time. This means that things 00762 larger than 4 bytes may go partly in registers and partly 00763 on the stack. */ 00764 len -= register_size (gdbarch, argreg); 00765 val += register_size (gdbarch, argreg); 00766 } 00767 } 00768 00769 /* Finally, update the SP register. */ 00770 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); 00771 00772 return sp; 00773 } 00774 00775 00776 /* Given a return value in `regbuf' with a type `valtype', 00777 extract and copy its value into `valbuf'. */ 00778 00779 static void 00780 m32r_extract_return_value (struct type *type, struct regcache *regcache, 00781 void *dst) 00782 { 00783 struct gdbarch *gdbarch = get_regcache_arch (regcache); 00784 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00785 bfd_byte *valbuf = dst; 00786 int len = TYPE_LENGTH (type); 00787 ULONGEST tmp; 00788 00789 /* By using store_unsigned_integer we avoid having to do 00790 anything special for small big-endian values. */ 00791 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); 00792 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp); 00793 00794 /* Ignore return values more than 8 bytes in size because the m32r 00795 returns anything more than 8 bytes in the stack. */ 00796 if (len > 4) 00797 { 00798 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); 00799 store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp); 00800 } 00801 } 00802 00803 static enum return_value_convention 00804 m32r_return_value (struct gdbarch *gdbarch, struct value *function, 00805 struct type *valtype, struct regcache *regcache, 00806 gdb_byte *readbuf, const gdb_byte *writebuf) 00807 { 00808 if (TYPE_LENGTH (valtype) > 8) 00809 return RETURN_VALUE_STRUCT_CONVENTION; 00810 else 00811 { 00812 if (readbuf != NULL) 00813 m32r_extract_return_value (valtype, regcache, readbuf); 00814 if (writebuf != NULL) 00815 m32r_store_return_value (valtype, regcache, writebuf); 00816 return RETURN_VALUE_REGISTER_CONVENTION; 00817 } 00818 } 00819 00820 00821 00822 static CORE_ADDR 00823 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 00824 { 00825 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM); 00826 } 00827 00828 /* Given a GDB frame, determine the address of the calling function's 00829 frame. This will be used to create a new GDB frame struct. */ 00830 00831 static void 00832 m32r_frame_this_id (struct frame_info *this_frame, 00833 void **this_prologue_cache, struct frame_id *this_id) 00834 { 00835 struct m32r_unwind_cache *info 00836 = m32r_frame_unwind_cache (this_frame, this_prologue_cache); 00837 CORE_ADDR base; 00838 CORE_ADDR func; 00839 struct minimal_symbol *msym_stack; 00840 struct frame_id id; 00841 00842 /* The FUNC is easy. */ 00843 func = get_frame_func (this_frame); 00844 00845 /* Check if the stack is empty. */ 00846 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); 00847 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack)) 00848 return; 00849 00850 /* Hopefully the prologue analysis either correctly determined the 00851 frame's base (which is the SP from the previous frame), or set 00852 that base to "NULL". */ 00853 base = info->prev_sp; 00854 if (base == 0) 00855 return; 00856 00857 id = frame_id_build (base, func); 00858 (*this_id) = id; 00859 } 00860 00861 static struct value * 00862 m32r_frame_prev_register (struct frame_info *this_frame, 00863 void **this_prologue_cache, int regnum) 00864 { 00865 struct m32r_unwind_cache *info 00866 = m32r_frame_unwind_cache (this_frame, this_prologue_cache); 00867 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); 00868 } 00869 00870 static const struct frame_unwind m32r_frame_unwind = { 00871 NORMAL_FRAME, 00872 default_frame_unwind_stop_reason, 00873 m32r_frame_this_id, 00874 m32r_frame_prev_register, 00875 NULL, 00876 default_frame_sniffer 00877 }; 00878 00879 static CORE_ADDR 00880 m32r_frame_base_address (struct frame_info *this_frame, void **this_cache) 00881 { 00882 struct m32r_unwind_cache *info 00883 = m32r_frame_unwind_cache (this_frame, this_cache); 00884 return info->base; 00885 } 00886 00887 static const struct frame_base m32r_frame_base = { 00888 &m32r_frame_unwind, 00889 m32r_frame_base_address, 00890 m32r_frame_base_address, 00891 m32r_frame_base_address 00892 }; 00893 00894 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy 00895 frame. The frame ID's base needs to match the TOS value saved by 00896 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ 00897 00898 static struct frame_id 00899 m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 00900 { 00901 CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); 00902 return frame_id_build (sp, get_frame_pc (this_frame)); 00903 } 00904 00905 00906 static gdbarch_init_ftype m32r_gdbarch_init; 00907 00908 static struct gdbarch * 00909 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 00910 { 00911 struct gdbarch *gdbarch; 00912 struct gdbarch_tdep *tdep; 00913 00914 /* If there is already a candidate, use it. */ 00915 arches = gdbarch_list_lookup_by_info (arches, &info); 00916 if (arches != NULL) 00917 return arches->gdbarch; 00918 00919 /* Allocate space for the new architecture. */ 00920 tdep = XMALLOC (struct gdbarch_tdep); 00921 gdbarch = gdbarch_alloc (&info, tdep); 00922 00923 set_gdbarch_read_pc (gdbarch, m32r_read_pc); 00924 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp); 00925 00926 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); 00927 set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM); 00928 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); 00929 set_gdbarch_register_name (gdbarch, m32r_register_name); 00930 set_gdbarch_register_type (gdbarch, m32r_register_type); 00931 00932 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); 00933 set_gdbarch_return_value (gdbarch, m32r_return_value); 00934 00935 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); 00936 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 00937 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc); 00938 set_gdbarch_memory_insert_breakpoint (gdbarch, 00939 m32r_memory_insert_breakpoint); 00940 set_gdbarch_memory_remove_breakpoint (gdbarch, 00941 m32r_memory_remove_breakpoint); 00942 00943 set_gdbarch_frame_align (gdbarch, m32r_frame_align); 00944 00945 frame_base_set_default (gdbarch, &m32r_frame_base); 00946 00947 /* Methods for saving / extracting a dummy frame's ID. The ID's 00948 stack address must match the SP value returned by 00949 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ 00950 set_gdbarch_dummy_id (gdbarch, m32r_dummy_id); 00951 00952 /* Return the unwound PC value. */ 00953 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc); 00954 00955 set_gdbarch_print_insn (gdbarch, print_insn_m32r); 00956 00957 /* Hook in ABI-specific overrides, if they have been registered. */ 00958 gdbarch_init_osabi (info, gdbarch); 00959 00960 /* Hook in the default unwinders. */ 00961 frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind); 00962 00963 /* Support simple overlay manager. */ 00964 set_gdbarch_overlay_update (gdbarch, simple_overlay_update); 00965 00966 return gdbarch; 00967 } 00968 00969 void 00970 _initialize_m32r_tdep (void) 00971 { 00972 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init); 00973 }