GDB (API)
|
00001 /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB. 00002 00003 Copyright (C) 2004-2013 Free Software Foundation, Inc. 00004 00005 This file is part of GDB. 00006 00007 This program is free software; you can redistribute it and/or modify 00008 it under the terms of the GNU General Public License as published by 00009 the Free Software Foundation; either version 3 of the License, or 00010 (at your option) any later version. 00011 00012 This program is distributed in the hope that it will be useful, 00013 but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 GNU General Public License for more details. 00016 00017 You should have received a copy of the GNU General Public License 00018 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 00019 00020 #include "defs.h" 00021 #include "gdbcore.h" 00022 #include "osabi.h" 00023 #include "target.h" 00024 #include "objfiles.h" 00025 #include "solib-svr4.h" 00026 #include "glibc-tdep.h" 00027 #include "frame-unwind.h" 00028 #include "trad-frame.h" 00029 #include "dwarf2-frame.h" 00030 #include "value.h" 00031 #include "regset.h" 00032 #include "regcache.h" 00033 #include "hppa-tdep.h" 00034 #include "linux-tdep.h" 00035 #include "elf/common.h" 00036 00037 /* Map DWARF DBX register numbers to GDB register numbers. */ 00038 static int 00039 hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) 00040 { 00041 /* The general registers and the sar are the same in both sets. */ 00042 if (reg <= 32) 00043 return reg; 00044 00045 /* fr4-fr31 (left and right halves) are mapped from 72. */ 00046 if (reg >= 72 && reg <= 72 + 28 * 2) 00047 return HPPA_FP4_REGNUM + (reg - 72); 00048 00049 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg); 00050 return -1; 00051 } 00052 00053 static void 00054 hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v) 00055 { 00056 /* Probably this should be done by the kernel, but it isn't. */ 00057 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3); 00058 regcache_cooked_write_unsigned (regcache, 00059 HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3); 00060 } 00061 00062 /* An instruction to match. */ 00063 struct insn_pattern 00064 { 00065 unsigned int data; /* See if it matches this.... */ 00066 unsigned int mask; /* ... with this mask. */ 00067 }; 00068 00069 static struct insn_pattern hppa_sigtramp[] = { 00070 /* ldi 0, %r25 or ldi 1, %r25 */ 00071 { 0x34190000, 0xfffffffd }, 00072 /* ldi __NR_rt_sigreturn, %r20 */ 00073 { 0x3414015a, 0xffffffff }, 00074 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */ 00075 { 0xe4008200, 0xffffffff }, 00076 /* nop */ 00077 { 0x08000240, 0xffffffff }, 00078 { 0, 0 } 00079 }; 00080 00081 #define HPPA_MAX_INSN_PATTERN_LEN (4) 00082 00083 /* Return non-zero if the instructions at PC match the series 00084 described in PATTERN, or zero otherwise. PATTERN is an array of 00085 'struct insn_pattern' objects, terminated by an entry whose mask is 00086 zero. 00087 00088 When the match is successful, fill INSN[i] with what PATTERN[i] 00089 matched. */ 00090 static int 00091 insns_match_pattern (struct gdbarch *gdbarch, CORE_ADDR pc, 00092 struct insn_pattern *pattern, 00093 unsigned int *insn) 00094 { 00095 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00096 int i; 00097 CORE_ADDR npc = pc; 00098 00099 for (i = 0; pattern[i].mask; i++) 00100 { 00101 gdb_byte buf[4]; 00102 00103 target_read_memory (npc, buf, 4); 00104 insn[i] = extract_unsigned_integer (buf, 4, byte_order); 00105 if ((insn[i] & pattern[i].mask) == pattern[i].data) 00106 npc += 4; 00107 else 00108 return 0; 00109 } 00110 return 1; 00111 } 00112 00113 /* Signal frames. */ 00114 00115 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.) 00116 00117 Unfortunately, because of various bugs and changes to the kernel, 00118 we have several cases to deal with. 00119 00120 In 2.4, the signal trampoline is 4 bytes, and pc should point directly at 00121 the beginning of the trampoline and struct rt_sigframe. 00122 00123 In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at 00124 the 4th word in the trampoline structure. This is wrong, it should point 00125 at the 5th word. This is fixed in 2.6.5-rc2-pa4. 00126 00127 To detect these cases, we first take pc, align it to 64-bytes 00128 to get the beginning of the signal frame, and then check offsets 0, 4 00129 and 5 to see if we found the beginning of the trampoline. This will 00130 tell us how to locate the sigcontext structure. 00131 00132 Note that with a 2.4 64-bit kernel, the signal context is not properly 00133 passed back to userspace so the unwind will not work correctly. */ 00134 static CORE_ADDR 00135 hppa_linux_sigtramp_find_sigcontext (struct gdbarch *gdbarch, CORE_ADDR pc) 00136 { 00137 unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN]; 00138 int offs = 0; 00139 int try; 00140 /* offsets to try to find the trampoline */ 00141 static int pcoffs[] = { 0, 4*4, 5*4 }; 00142 /* offsets to the rt_sigframe structure */ 00143 static int sfoffs[] = { 4*4, 10*4, 10*4 }; 00144 CORE_ADDR sp; 00145 00146 /* Most of the time, this will be correct. The one case when this will 00147 fail is if the user defined an alternate stack, in which case the 00148 beginning of the stack will not be align_down (pc, 64). */ 00149 sp = align_down (pc, 64); 00150 00151 /* rt_sigreturn trampoline: 00152 3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2) 00153 3414015a ldi __NR_rt_sigreturn, %r20 00154 e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31 00155 08000240 nop */ 00156 00157 for (try = 0; try < ARRAY_SIZE (pcoffs); try++) 00158 { 00159 if (insns_match_pattern (gdbarch, sp + pcoffs[try], 00160 hppa_sigtramp, dummy)) 00161 { 00162 offs = sfoffs[try]; 00163 break; 00164 } 00165 } 00166 00167 if (offs == 0) 00168 { 00169 if (insns_match_pattern (gdbarch, pc, hppa_sigtramp, dummy)) 00170 { 00171 /* sigaltstack case: we have no way of knowing which offset to 00172 use in this case; default to new kernel handling. If this is 00173 wrong the unwinding will fail. */ 00174 try = 2; 00175 sp = pc - pcoffs[try]; 00176 } 00177 else 00178 { 00179 return 0; 00180 } 00181 } 00182 00183 /* sp + sfoffs[try] points to a struct rt_sigframe, which contains 00184 a struct siginfo and a struct ucontext. struct ucontext contains 00185 a struct sigcontext. Return an offset to this sigcontext here. Too 00186 bad we cannot include system specific headers :-(. 00187 sizeof(struct siginfo) == 128 00188 offsetof(struct ucontext, uc_mcontext) == 24. */ 00189 return sp + sfoffs[try] + 128 + 24; 00190 } 00191 00192 struct hppa_linux_sigtramp_unwind_cache 00193 { 00194 CORE_ADDR base; 00195 struct trad_frame_saved_reg *saved_regs; 00196 }; 00197 00198 static struct hppa_linux_sigtramp_unwind_cache * 00199 hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *this_frame, 00200 void **this_cache) 00201 { 00202 struct gdbarch *gdbarch = get_frame_arch (this_frame); 00203 struct hppa_linux_sigtramp_unwind_cache *info; 00204 CORE_ADDR pc, scptr; 00205 int i; 00206 00207 if (*this_cache) 00208 return *this_cache; 00209 00210 info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache); 00211 *this_cache = info; 00212 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 00213 00214 pc = get_frame_pc (this_frame); 00215 scptr = hppa_linux_sigtramp_find_sigcontext (gdbarch, pc); 00216 00217 /* structure of struct sigcontext: 00218 00219 struct sigcontext { 00220 unsigned long sc_flags; 00221 unsigned long sc_gr[32]; 00222 unsigned long long sc_fr[32]; 00223 unsigned long sc_iasq[2]; 00224 unsigned long sc_iaoq[2]; 00225 unsigned long sc_sar; */ 00226 00227 /* Skip sc_flags. */ 00228 scptr += 4; 00229 00230 /* GR[0] is the psw. */ 00231 info->saved_regs[HPPA_IPSW_REGNUM].addr = scptr; 00232 scptr += 4; 00233 00234 /* General registers. */ 00235 for (i = 1; i < 32; i++) 00236 { 00237 info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr; 00238 scptr += 4; 00239 } 00240 00241 /* Pad to long long boundary. */ 00242 scptr += 4; 00243 00244 /* FP regs; FP0-3 are not restored. */ 00245 scptr += (8 * 4); 00246 00247 for (i = 4; i < 32; i++) 00248 { 00249 info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr; 00250 scptr += 4; 00251 info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr; 00252 scptr += 4; 00253 } 00254 00255 /* IASQ/IAOQ. */ 00256 info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr; 00257 scptr += 4; 00258 info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr; 00259 scptr += 4; 00260 00261 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr; 00262 scptr += 4; 00263 info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr; 00264 scptr += 4; 00265 00266 info->saved_regs[HPPA_SAR_REGNUM].addr = scptr; 00267 00268 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); 00269 00270 return info; 00271 } 00272 00273 static void 00274 hppa_linux_sigtramp_frame_this_id (struct frame_info *this_frame, 00275 void **this_prologue_cache, 00276 struct frame_id *this_id) 00277 { 00278 struct hppa_linux_sigtramp_unwind_cache *info 00279 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); 00280 *this_id = frame_id_build (info->base, get_frame_pc (this_frame)); 00281 } 00282 00283 static struct value * 00284 hppa_linux_sigtramp_frame_prev_register (struct frame_info *this_frame, 00285 void **this_prologue_cache, 00286 int regnum) 00287 { 00288 struct hppa_linux_sigtramp_unwind_cache *info 00289 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); 00290 return hppa_frame_prev_register_helper (this_frame, 00291 info->saved_regs, regnum); 00292 } 00293 00294 /* hppa-linux always uses "new-style" rt-signals. The signal handler's return 00295 address should point to a signal trampoline on the stack. The signal 00296 trampoline is embedded in a rt_sigframe structure that is aligned on 00297 the stack. We take advantage of the fact that sp must be 64-byte aligned, 00298 and the trampoline is small, so by rounding down the trampoline address 00299 we can find the beginning of the struct rt_sigframe. */ 00300 static int 00301 hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self, 00302 struct frame_info *this_frame, 00303 void **this_prologue_cache) 00304 { 00305 struct gdbarch *gdbarch = get_frame_arch (this_frame); 00306 CORE_ADDR pc = get_frame_pc (this_frame); 00307 00308 if (hppa_linux_sigtramp_find_sigcontext (gdbarch, pc)) 00309 return 1; 00310 00311 return 0; 00312 } 00313 00314 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = { 00315 SIGTRAMP_FRAME, 00316 default_frame_unwind_stop_reason, 00317 hppa_linux_sigtramp_frame_this_id, 00318 hppa_linux_sigtramp_frame_prev_register, 00319 NULL, 00320 hppa_linux_sigtramp_frame_sniffer 00321 }; 00322 00323 /* Attempt to find (and return) the global pointer for the given 00324 function. 00325 00326 This is a rather nasty bit of code searchs for the .dynamic section 00327 in the objfile corresponding to the pc of the function we're trying 00328 to call. Once it finds the addresses at which the .dynamic section 00329 lives in the child process, it scans the Elf32_Dyn entries for a 00330 DT_PLTGOT tag. If it finds one of these, the corresponding 00331 d_un.d_ptr value is the global pointer. */ 00332 00333 static CORE_ADDR 00334 hppa_linux_find_global_pointer (struct gdbarch *gdbarch, 00335 struct value *function) 00336 { 00337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 00338 struct obj_section *faddr_sect; 00339 CORE_ADDR faddr; 00340 00341 faddr = value_as_address (function); 00342 00343 /* Is this a plabel? If so, dereference it to get the gp value. */ 00344 if (faddr & 2) 00345 { 00346 int status; 00347 gdb_byte buf[4]; 00348 00349 faddr &= ~3; 00350 00351 status = target_read_memory (faddr + 4, buf, sizeof (buf)); 00352 if (status == 0) 00353 return extract_unsigned_integer (buf, sizeof (buf), byte_order); 00354 } 00355 00356 /* If the address is in the plt section, then the real function hasn't 00357 yet been fixed up by the linker so we cannot determine the gp of 00358 that function. */ 00359 if (in_plt_section (faddr)) 00360 return 0; 00361 00362 faddr_sect = find_pc_section (faddr); 00363 if (faddr_sect != NULL) 00364 { 00365 struct obj_section *osect; 00366 00367 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) 00368 { 00369 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) 00370 break; 00371 } 00372 00373 if (osect < faddr_sect->objfile->sections_end) 00374 { 00375 CORE_ADDR addr, endaddr; 00376 00377 addr = obj_section_addr (osect); 00378 endaddr = obj_section_endaddr (osect); 00379 00380 while (addr < endaddr) 00381 { 00382 int status; 00383 LONGEST tag; 00384 gdb_byte buf[4]; 00385 00386 status = target_read_memory (addr, buf, sizeof (buf)); 00387 if (status != 0) 00388 break; 00389 tag = extract_signed_integer (buf, sizeof (buf), byte_order); 00390 00391 if (tag == DT_PLTGOT) 00392 { 00393 CORE_ADDR global_pointer; 00394 00395 status = target_read_memory (addr + 4, buf, sizeof (buf)); 00396 if (status != 0) 00397 break; 00398 global_pointer = extract_unsigned_integer (buf, sizeof (buf), 00399 byte_order); 00400 /* The payoff... */ 00401 return global_pointer; 00402 } 00403 00404 if (tag == DT_NULL) 00405 break; 00406 00407 addr += 8; 00408 } 00409 } 00410 } 00411 return 0; 00412 } 00413 00414 /* 00415 * Registers saved in a coredump: 00416 * gr0..gr31 00417 * sr0..sr7 00418 * iaoq0..iaoq1 00419 * iasq0..iasq1 00420 * sar, iir, isr, ior, ipsw 00421 * cr0, cr24..cr31 00422 * cr8,9,12,13 00423 * cr10, cr15 00424 */ 00425 00426 #define GR_REGNUM(_n) (HPPA_R0_REGNUM+_n) 00427 #define TR_REGNUM(_n) (HPPA_TR0_REGNUM+_n) 00428 static const int greg_map[] = 00429 { 00430 GR_REGNUM(0), GR_REGNUM(1), GR_REGNUM(2), GR_REGNUM(3), 00431 GR_REGNUM(4), GR_REGNUM(5), GR_REGNUM(6), GR_REGNUM(7), 00432 GR_REGNUM(8), GR_REGNUM(9), GR_REGNUM(10), GR_REGNUM(11), 00433 GR_REGNUM(12), GR_REGNUM(13), GR_REGNUM(14), GR_REGNUM(15), 00434 GR_REGNUM(16), GR_REGNUM(17), GR_REGNUM(18), GR_REGNUM(19), 00435 GR_REGNUM(20), GR_REGNUM(21), GR_REGNUM(22), GR_REGNUM(23), 00436 GR_REGNUM(24), GR_REGNUM(25), GR_REGNUM(26), GR_REGNUM(27), 00437 GR_REGNUM(28), GR_REGNUM(29), GR_REGNUM(30), GR_REGNUM(31), 00438 00439 HPPA_SR4_REGNUM+1, HPPA_SR4_REGNUM+2, HPPA_SR4_REGNUM+3, HPPA_SR4_REGNUM+4, 00440 HPPA_SR4_REGNUM, HPPA_SR4_REGNUM+5, HPPA_SR4_REGNUM+6, HPPA_SR4_REGNUM+7, 00441 00442 HPPA_PCOQ_HEAD_REGNUM, HPPA_PCOQ_TAIL_REGNUM, 00443 HPPA_PCSQ_HEAD_REGNUM, HPPA_PCSQ_TAIL_REGNUM, 00444 00445 HPPA_SAR_REGNUM, HPPA_IIR_REGNUM, HPPA_ISR_REGNUM, HPPA_IOR_REGNUM, 00446 HPPA_IPSW_REGNUM, HPPA_RCR_REGNUM, 00447 00448 TR_REGNUM(0), TR_REGNUM(1), TR_REGNUM(2), TR_REGNUM(3), 00449 TR_REGNUM(4), TR_REGNUM(5), TR_REGNUM(6), TR_REGNUM(7), 00450 00451 HPPA_PID0_REGNUM, HPPA_PID1_REGNUM, HPPA_PID2_REGNUM, HPPA_PID3_REGNUM, 00452 HPPA_CCR_REGNUM, HPPA_EIEM_REGNUM, 00453 }; 00454 00455 static void 00456 hppa_linux_supply_regset (const struct regset *regset, 00457 struct regcache *regcache, 00458 int regnum, const void *regs, size_t len) 00459 { 00460 struct gdbarch *arch = get_regcache_arch (regcache); 00461 struct gdbarch_tdep *tdep = gdbarch_tdep (arch); 00462 const char *buf = regs; 00463 int i, offset; 00464 00465 offset = 0; 00466 for (i = 0; i < ARRAY_SIZE (greg_map); i++) 00467 { 00468 if (regnum == greg_map[i] || regnum == -1) 00469 regcache_raw_supply (regcache, greg_map[i], buf + offset); 00470 00471 offset += tdep->bytes_per_address; 00472 } 00473 } 00474 00475 static void 00476 hppa_linux_supply_fpregset (const struct regset *regset, 00477 struct regcache *regcache, 00478 int regnum, const void *regs, size_t len) 00479 { 00480 const char *buf = regs; 00481 int i, offset; 00482 00483 offset = 0; 00484 for (i = 0; i < 64; i++) 00485 { 00486 if (regnum == HPPA_FP0_REGNUM + i || regnum == -1) 00487 regcache_raw_supply (regcache, HPPA_FP0_REGNUM + i, 00488 buf + offset); 00489 offset += 4; 00490 } 00491 } 00492 00493 /* HPPA Linux kernel register set. */ 00494 static struct regset hppa_linux_regset = 00495 { 00496 NULL, 00497 hppa_linux_supply_regset 00498 }; 00499 00500 static struct regset hppa_linux_fpregset = 00501 { 00502 NULL, 00503 hppa_linux_supply_fpregset 00504 }; 00505 00506 static const struct regset * 00507 hppa_linux_regset_from_core_section (struct gdbarch *gdbarch, 00508 const char *sect_name, 00509 size_t sect_size) 00510 { 00511 if (strcmp (sect_name, ".reg") == 0) 00512 return &hppa_linux_regset; 00513 else if (strcmp (sect_name, ".reg2") == 0) 00514 return &hppa_linux_fpregset; 00515 00516 return NULL; 00517 } 00518 00519 00520 /* Forward declarations. */ 00521 extern initialize_file_ftype _initialize_hppa_linux_tdep; 00522 00523 static void 00524 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 00525 { 00526 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 00527 00528 linux_init_abi (info, gdbarch); 00529 00530 /* GNU/Linux is always ELF. */ 00531 tdep->is_elf = 1; 00532 00533 tdep->find_global_pointer = hppa_linux_find_global_pointer; 00534 00535 set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc); 00536 00537 frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind); 00538 00539 /* GNU/Linux uses SVR4-style shared libraries. */ 00540 set_solib_svr4_fetch_link_map_offsets 00541 (gdbarch, svr4_ilp32_fetch_link_map_offsets); 00542 00543 tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline; 00544 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code); 00545 00546 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */ 00547 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver); 00548 00549 /* On hppa-linux, currently, sizeof(long double) == 8. There has been 00550 some discussions to support 128-bit long double, but it requires some 00551 more work in gcc and glibc first. */ 00552 set_gdbarch_long_double_bit (gdbarch, 64); 00553 00554 set_gdbarch_regset_from_core_section 00555 (gdbarch, hppa_linux_regset_from_core_section); 00556 00557 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum); 00558 00559 /* Enable TLS support. */ 00560 set_gdbarch_fetch_tls_load_module_address (gdbarch, 00561 svr4_fetch_objfile_link_map); 00562 } 00563 00564 void 00565 _initialize_hppa_linux_tdep (void) 00566 { 00567 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX, 00568 hppa_linux_init_abi); 00569 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, 00570 GDB_OSABI_LINUX, hppa_linux_init_abi); 00571 }