GDB (API)
/home/stan/gdb/src/gdb/frv-tdep.c
Go to the documentation of this file.
00001 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
00002 
00003    Copyright (C) 2002-2013 Free Software Foundation, Inc.
00004 
00005    This file is part of GDB.
00006 
00007    This program is free software; you can redistribute it and/or modify
00008    it under the terms of the GNU General Public License as published by
00009    the Free Software Foundation; either version 3 of the License, or
00010    (at your option) any later version.
00011 
00012    This program is distributed in the hope that it will be useful,
00013    but WITHOUT ANY WARRANTY; without even the implied warranty of
00014    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015    GNU General Public License for more details.
00016 
00017    You should have received a copy of the GNU General Public License
00018    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
00019 
00020 #include "defs.h"
00021 #include "gdb_string.h"
00022 #include "inferior.h"
00023 #include "gdbcore.h"
00024 #include "arch-utils.h"
00025 #include "regcache.h"
00026 #include "frame.h"
00027 #include "frame-unwind.h"
00028 #include "frame-base.h"
00029 #include "trad-frame.h"
00030 #include "dis-asm.h"
00031 #include "gdb_assert.h"
00032 #include "sim-regno.h"
00033 #include "gdb/sim-frv.h"
00034 #include "opcodes/frv-desc.h"   /* for the H_SPR_... enums */
00035 #include "symtab.h"
00036 #include "elf-bfd.h"
00037 #include "elf/frv.h"
00038 #include "osabi.h"
00039 #include "infcall.h"
00040 #include "solib.h"
00041 #include "frv-tdep.h"
00042 
00043 extern void _initialize_frv_tdep (void);
00044 
00045 struct frv_unwind_cache         /* was struct frame_extra_info */
00046   {
00047     /* The previous frame's inner-most stack address.  Used as this
00048        frame ID's stack_addr.  */
00049     CORE_ADDR prev_sp;
00050 
00051     /* The frame's base, optionally used by the high-level debug info.  */
00052     CORE_ADDR base;
00053 
00054     /* Table indicating the location of each and every register.  */
00055     struct trad_frame_saved_reg *saved_regs;
00056   };
00057 
00058 /* A structure describing a particular variant of the FRV.
00059    We allocate and initialize one of these structures when we create
00060    the gdbarch object for a variant.
00061 
00062    At the moment, all the FR variants we support differ only in which
00063    registers are present; the portable code of GDB knows that
00064    registers whose names are the empty string don't exist, so the
00065    `register_names' array captures all the per-variant information we
00066    need.
00067 
00068    in the future, if we need to have per-variant maps for raw size,
00069    virtual type, etc., we should replace register_names with an array
00070    of structures, each of which gives all the necessary info for one
00071    register.  Don't stick parallel arrays in here --- that's so
00072    Fortran.  */
00073 struct gdbarch_tdep
00074 {
00075   /* Which ABI is in use?  */
00076   enum frv_abi frv_abi;
00077 
00078   /* How many general-purpose registers does this variant have?  */
00079   int num_gprs;
00080 
00081   /* How many floating-point registers does this variant have?  */
00082   int num_fprs;
00083 
00084   /* How many hardware watchpoints can it support?  */
00085   int num_hw_watchpoints;
00086 
00087   /* How many hardware breakpoints can it support?  */
00088   int num_hw_breakpoints;
00089 
00090   /* Register names.  */
00091   char **register_names;
00092 };
00093 
00094 /* Return the FR-V ABI associated with GDBARCH.  */
00095 enum frv_abi
00096 frv_abi (struct gdbarch *gdbarch)
00097 {
00098   return gdbarch_tdep (gdbarch)->frv_abi;
00099 }
00100 
00101 /* Fetch the interpreter and executable loadmap addresses (for shared
00102    library support) for the FDPIC ABI.  Return 0 if successful, -1 if
00103    not.  (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.)  */
00104 int
00105 frv_fdpic_loadmap_addresses (struct gdbarch *gdbarch, CORE_ADDR *interp_addr,
00106                              CORE_ADDR *exec_addr)
00107 {
00108   if (frv_abi (gdbarch) != FRV_ABI_FDPIC)
00109     return -1;
00110   else
00111     {
00112       struct regcache *regcache = get_current_regcache ();
00113 
00114       if (interp_addr != NULL)
00115         {
00116           ULONGEST val;
00117           regcache_cooked_read_unsigned (regcache,
00118                                          fdpic_loadmap_interp_regnum, &val);
00119           *interp_addr = val;
00120         }
00121       if (exec_addr != NULL)
00122         {
00123           ULONGEST val;
00124           regcache_cooked_read_unsigned (regcache,
00125                                          fdpic_loadmap_exec_regnum, &val);
00126           *exec_addr = val;
00127         }
00128       return 0;
00129     }
00130 }
00131 
00132 /* Allocate a new variant structure, and set up default values for all
00133    the fields.  */
00134 static struct gdbarch_tdep *
00135 new_variant (void)
00136 {
00137   struct gdbarch_tdep *var;
00138   int r;
00139 
00140   var = xmalloc (sizeof (*var));
00141   memset (var, 0, sizeof (*var));
00142   
00143   var->frv_abi = FRV_ABI_EABI;
00144   var->num_gprs = 64;
00145   var->num_fprs = 64;
00146   var->num_hw_watchpoints = 0;
00147   var->num_hw_breakpoints = 0;
00148 
00149   /* By default, don't supply any general-purpose or floating-point
00150      register names.  */
00151   var->register_names 
00152     = (char **) xmalloc ((frv_num_regs + frv_num_pseudo_regs)
00153                          * sizeof (char *));
00154   for (r = 0; r < frv_num_regs + frv_num_pseudo_regs; r++)
00155     var->register_names[r] = "";
00156 
00157   /* Do, however, supply default names for the known special-purpose
00158      registers.  */
00159 
00160   var->register_names[pc_regnum] = "pc";
00161   var->register_names[lr_regnum] = "lr";
00162   var->register_names[lcr_regnum] = "lcr";
00163      
00164   var->register_names[psr_regnum] = "psr";
00165   var->register_names[ccr_regnum] = "ccr";
00166   var->register_names[cccr_regnum] = "cccr";
00167   var->register_names[tbr_regnum] = "tbr";
00168 
00169   /* Debug registers.  */
00170   var->register_names[brr_regnum] = "brr";
00171   var->register_names[dbar0_regnum] = "dbar0";
00172   var->register_names[dbar1_regnum] = "dbar1";
00173   var->register_names[dbar2_regnum] = "dbar2";
00174   var->register_names[dbar3_regnum] = "dbar3";
00175 
00176   /* iacc0 (Only found on MB93405.)  */
00177   var->register_names[iacc0h_regnum] = "iacc0h";
00178   var->register_names[iacc0l_regnum] = "iacc0l";
00179   var->register_names[iacc0_regnum] = "iacc0";
00180 
00181   /* fsr0 (Found on FR555 and FR501.)  */
00182   var->register_names[fsr0_regnum] = "fsr0";
00183 
00184   /* acc0 - acc7.  The architecture provides for the possibility of many
00185      more (up to 64 total), but we don't want to make that big of a hole
00186      in the G packet.  If we need more in the future, we'll add them
00187      elsewhere.  */
00188   for (r = acc0_regnum; r <= acc7_regnum; r++)
00189     {
00190       char *buf;
00191       buf = xstrprintf ("acc%d", r - acc0_regnum);
00192       var->register_names[r] = buf;
00193     }
00194 
00195   /* accg0 - accg7: These are one byte registers.  The remote protocol
00196      provides the raw values packed four into a slot.  accg0123 and
00197      accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
00198      We don't provide names for accg0123 and accg4567 since the user will
00199      likely not want to see these raw values.  */
00200 
00201   for (r = accg0_regnum; r <= accg7_regnum; r++)
00202     {
00203       char *buf;
00204       buf = xstrprintf ("accg%d", r - accg0_regnum);
00205       var->register_names[r] = buf;
00206     }
00207 
00208   /* msr0 and msr1.  */
00209 
00210   var->register_names[msr0_regnum] = "msr0";
00211   var->register_names[msr1_regnum] = "msr1";
00212 
00213   /* gner and fner registers.  */
00214   var->register_names[gner0_regnum] = "gner0";
00215   var->register_names[gner1_regnum] = "gner1";
00216   var->register_names[fner0_regnum] = "fner0";
00217   var->register_names[fner1_regnum] = "fner1";
00218 
00219   return var;
00220 }
00221 
00222 
00223 /* Indicate that the variant VAR has NUM_GPRS general-purpose
00224    registers, and fill in the names array appropriately.  */
00225 static void
00226 set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs)
00227 {
00228   int r;
00229 
00230   var->num_gprs = num_gprs;
00231 
00232   for (r = 0; r < num_gprs; ++r)
00233     {
00234       char buf[20];
00235 
00236       xsnprintf (buf, sizeof (buf), "gr%d", r);
00237       var->register_names[first_gpr_regnum + r] = xstrdup (buf);
00238     }
00239 }
00240 
00241 
00242 /* Indicate that the variant VAR has NUM_FPRS floating-point
00243    registers, and fill in the names array appropriately.  */
00244 static void
00245 set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs)
00246 {
00247   int r;
00248 
00249   var->num_fprs = num_fprs;
00250 
00251   for (r = 0; r < num_fprs; ++r)
00252     {
00253       char buf[20];
00254 
00255       xsnprintf (buf, sizeof (buf), "fr%d", r);
00256       var->register_names[first_fpr_regnum + r] = xstrdup (buf);
00257     }
00258 }
00259 
00260 static void
00261 set_variant_abi_fdpic (struct gdbarch_tdep *var)
00262 {
00263   var->frv_abi = FRV_ABI_FDPIC;
00264   var->register_names[fdpic_loadmap_exec_regnum] = xstrdup ("loadmap_exec");
00265   var->register_names[fdpic_loadmap_interp_regnum]
00266     = xstrdup ("loadmap_interp");
00267 }
00268 
00269 static void
00270 set_variant_scratch_registers (struct gdbarch_tdep *var)
00271 {
00272   var->register_names[scr0_regnum] = xstrdup ("scr0");
00273   var->register_names[scr1_regnum] = xstrdup ("scr1");
00274   var->register_names[scr2_regnum] = xstrdup ("scr2");
00275   var->register_names[scr3_regnum] = xstrdup ("scr3");
00276 }
00277 
00278 static const char *
00279 frv_register_name (struct gdbarch *gdbarch, int reg)
00280 {
00281   if (reg < 0)
00282     return "?toosmall?";
00283   if (reg >= frv_num_regs + frv_num_pseudo_regs)
00284     return "?toolarge?";
00285 
00286   return gdbarch_tdep (gdbarch)->register_names[reg];
00287 }
00288 
00289 
00290 static struct type *
00291 frv_register_type (struct gdbarch *gdbarch, int reg)
00292 {
00293   if (reg >= first_fpr_regnum && reg <= last_fpr_regnum)
00294     return builtin_type (gdbarch)->builtin_float;
00295   else if (reg == iacc0_regnum)
00296     return builtin_type (gdbarch)->builtin_int64;
00297   else
00298     return builtin_type (gdbarch)->builtin_int32;
00299 }
00300 
00301 static enum register_status
00302 frv_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
00303                           int reg, gdb_byte *buffer)
00304 {
00305   enum register_status status;
00306 
00307   if (reg == iacc0_regnum)
00308     {
00309       status = regcache_raw_read (regcache, iacc0h_regnum, buffer);
00310       if (status == REG_VALID)
00311         status = regcache_raw_read (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
00312     }
00313   else if (accg0_regnum <= reg && reg <= accg7_regnum)
00314     {
00315       /* The accg raw registers have four values in each slot with the
00316          lowest register number occupying the first byte.  */
00317 
00318       int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
00319       int byte_num = (reg - accg0_regnum) % 4;
00320       gdb_byte buf[4];
00321 
00322       status = regcache_raw_read (regcache, raw_regnum, buf);
00323       if (status == REG_VALID)
00324         {
00325           memset (buffer, 0, 4);
00326           /* FR-V is big endian, so put the requested byte in the
00327              first byte of the buffer allocated to hold the
00328              pseudo-register.  */
00329           buffer[0] = buf[byte_num];
00330         }
00331     }
00332   else
00333     gdb_assert_not_reached ("invalid pseudo register number");
00334 
00335   return status;
00336 }
00337 
00338 static void
00339 frv_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
00340                           int reg, const gdb_byte *buffer)
00341 {
00342   if (reg == iacc0_regnum)
00343     {
00344       regcache_raw_write (regcache, iacc0h_regnum, buffer);
00345       regcache_raw_write (regcache, iacc0l_regnum, (bfd_byte *) buffer + 4);
00346     }
00347   else if (accg0_regnum <= reg && reg <= accg7_regnum)
00348     {
00349       /* The accg raw registers have four values in each slot with the
00350          lowest register number occupying the first byte.  */
00351 
00352       int raw_regnum = accg0123_regnum + (reg - accg0_regnum) / 4;
00353       int byte_num = (reg - accg0_regnum) % 4;
00354       gdb_byte buf[4];
00355 
00356       regcache_raw_read (regcache, raw_regnum, buf);
00357       buf[byte_num] = ((bfd_byte *) buffer)[0];
00358       regcache_raw_write (regcache, raw_regnum, buf);
00359     }
00360 }
00361 
00362 static int
00363 frv_register_sim_regno (struct gdbarch *gdbarch, int reg)
00364 {
00365   static const int spr_map[] =
00366     {
00367       H_SPR_PSR,                /* psr_regnum */
00368       H_SPR_CCR,                /* ccr_regnum */
00369       H_SPR_CCCR,               /* cccr_regnum */
00370       -1,                       /* fdpic_loadmap_exec_regnum */
00371       -1,                       /* fdpic_loadmap_interp_regnum */
00372       -1,                       /* 134 */
00373       H_SPR_TBR,                /* tbr_regnum */
00374       H_SPR_BRR,                /* brr_regnum */
00375       H_SPR_DBAR0,              /* dbar0_regnum */
00376       H_SPR_DBAR1,              /* dbar1_regnum */
00377       H_SPR_DBAR2,              /* dbar2_regnum */
00378       H_SPR_DBAR3,              /* dbar3_regnum */
00379       H_SPR_SCR0,               /* scr0_regnum */
00380       H_SPR_SCR1,               /* scr1_regnum */
00381       H_SPR_SCR2,               /* scr2_regnum */
00382       H_SPR_SCR3,               /* scr3_regnum */
00383       H_SPR_LR,                 /* lr_regnum */
00384       H_SPR_LCR,                /* lcr_regnum */
00385       H_SPR_IACC0H,             /* iacc0h_regnum */
00386       H_SPR_IACC0L,             /* iacc0l_regnum */
00387       H_SPR_FSR0,               /* fsr0_regnum */
00388       /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs.  */
00389       -1,                       /* acc0_regnum */
00390       -1,                       /* acc1_regnum */
00391       -1,                       /* acc2_regnum */
00392       -1,                       /* acc3_regnum */
00393       -1,                       /* acc4_regnum */
00394       -1,                       /* acc5_regnum */
00395       -1,                       /* acc6_regnum */
00396       -1,                       /* acc7_regnum */
00397       -1,                       /* acc0123_regnum */
00398       -1,                       /* acc4567_regnum */
00399       H_SPR_MSR0,               /* msr0_regnum */
00400       H_SPR_MSR1,               /* msr1_regnum */
00401       H_SPR_GNER0,              /* gner0_regnum */
00402       H_SPR_GNER1,              /* gner1_regnum */
00403       H_SPR_FNER0,              /* fner0_regnum */
00404       H_SPR_FNER1,              /* fner1_regnum */
00405     };
00406 
00407   gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
00408 
00409   if (first_gpr_regnum <= reg && reg <= last_gpr_regnum)
00410     return reg - first_gpr_regnum + SIM_FRV_GR0_REGNUM;
00411   else if (first_fpr_regnum <= reg && reg <= last_fpr_regnum)
00412     return reg - first_fpr_regnum + SIM_FRV_FR0_REGNUM;
00413   else if (pc_regnum == reg)
00414     return SIM_FRV_PC_REGNUM;
00415   else if (reg >= first_spr_regnum
00416            && reg < first_spr_regnum + sizeof (spr_map) / sizeof (spr_map[0]))
00417     {
00418       int spr_reg_offset = spr_map[reg - first_spr_regnum];
00419 
00420       if (spr_reg_offset < 0)
00421         return SIM_REGNO_DOES_NOT_EXIST;
00422       else
00423         return SIM_FRV_SPR0_REGNUM + spr_reg_offset;
00424     }
00425 
00426   internal_error (__FILE__, __LINE__, _("Bad register number %d"), reg);
00427 }
00428 
00429 static const unsigned char *
00430 frv_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenp)
00431 {
00432   static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01};
00433   *lenp = sizeof (breakpoint);
00434   return breakpoint;
00435 }
00436 
00437 /* Define the maximum number of instructions which may be packed into a
00438    bundle (VLIW instruction).  */
00439 static const int max_instrs_per_bundle = 8;
00440 
00441 /* Define the size (in bytes) of an FR-V instruction.  */
00442 static const int frv_instr_size = 4;
00443 
00444 /* Adjust a breakpoint's address to account for the FR-V architecture's
00445    constraint that a break instruction must not appear as any but the
00446    first instruction in the bundle.  */
00447 static CORE_ADDR
00448 frv_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
00449 {
00450   int count = max_instrs_per_bundle;
00451   CORE_ADDR addr = bpaddr - frv_instr_size;
00452   CORE_ADDR func_start = get_pc_function_start (bpaddr);
00453 
00454   /* Find the end of the previous packing sequence.  This will be indicated
00455      by either attempting to access some inaccessible memory or by finding
00456      an instruction word whose packing bit is set to one.  */
00457   while (count-- > 0 && addr >= func_start)
00458     {
00459       gdb_byte instr[frv_instr_size];
00460       int status;
00461 
00462       status = target_read_memory (addr, instr, sizeof instr);
00463 
00464       if (status != 0)
00465         break;
00466 
00467       /* This is a big endian architecture, so byte zero will have most
00468          significant byte.  The most significant bit of this byte is the
00469          packing bit.  */
00470       if (instr[0] & 0x80)
00471         break;
00472 
00473       addr -= frv_instr_size;
00474     }
00475 
00476   if (count > 0)
00477     bpaddr = addr + frv_instr_size;
00478 
00479   return bpaddr;
00480 }
00481 
00482 
00483 /* Return true if REG is a caller-saves ("scratch") register,
00484    false otherwise.  */
00485 static int
00486 is_caller_saves_reg (int reg)
00487 {
00488   return ((4 <= reg && reg <= 7)
00489           || (14 <= reg && reg <= 15)
00490           || (32 <= reg && reg <= 47));
00491 }
00492 
00493 
00494 /* Return true if REG is a callee-saves register, false otherwise.  */
00495 static int
00496 is_callee_saves_reg (int reg)
00497 {
00498   return ((16 <= reg && reg <= 31)
00499           || (48 <= reg && reg <= 63));
00500 }
00501 
00502 
00503 /* Return true if REG is an argument register, false otherwise.  */
00504 static int
00505 is_argument_reg (int reg)
00506 {
00507   return (8 <= reg && reg <= 13);
00508 }
00509 
00510 /* Scan an FR-V prologue, starting at PC, until frame->PC.
00511    If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
00512    We assume FRAME's saved_regs array has already been allocated and cleared.
00513    Return the first PC value after the prologue.
00514 
00515    Note that, for unoptimized code, we almost don't need this function
00516    at all; all arguments and locals live on the stack, so we just need
00517    the FP to find everything.  The catch: structures passed by value
00518    have their addresses living in registers; they're never spilled to
00519    the stack.  So if you ever want to be able to get to these
00520    arguments in any frame but the top, you'll need to do this serious
00521    prologue analysis.  */
00522 static CORE_ADDR
00523 frv_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
00524                       struct frame_info *this_frame,
00525                       struct frv_unwind_cache *info)
00526 {
00527   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
00528 
00529   /* When writing out instruction bitpatterns, we use the following
00530      letters to label instruction fields:
00531      P - The parallel bit.  We don't use this.
00532      J - The register number of GRj in the instruction description.
00533      K - The register number of GRk in the instruction description.
00534      I - The register number of GRi.
00535      S - a signed imediate offset.
00536      U - an unsigned immediate offset.
00537 
00538      The dots below the numbers indicate where hex digit boundaries
00539      fall, to make it easier to check the numbers.  */
00540 
00541   /* Non-zero iff we've seen the instruction that initializes the
00542      frame pointer for this function's frame.  */
00543   int fp_set = 0;
00544 
00545   /* If fp_set is non_zero, then this is the distance from
00546      the stack pointer to frame pointer: fp = sp + fp_offset.  */
00547   int fp_offset = 0;
00548 
00549   /* Total size of frame prior to any alloca operations.  */
00550   int framesize = 0;
00551 
00552   /* Flag indicating if lr has been saved on the stack.  */
00553   int lr_saved_on_stack = 0;
00554 
00555   /* The number of the general-purpose register we saved the return
00556      address ("link register") in, or -1 if we haven't moved it yet.  */
00557   int lr_save_reg = -1;
00558 
00559   /* Offset (from sp) at which lr has been saved on the stack.  */
00560 
00561   int lr_sp_offset = 0;
00562 
00563   /* If gr_saved[i] is non-zero, then we've noticed that general
00564      register i has been saved at gr_sp_offset[i] from the stack
00565      pointer.  */
00566   char gr_saved[64];
00567   int gr_sp_offset[64];
00568 
00569   /* The address of the most recently scanned prologue instruction.  */
00570   CORE_ADDR last_prologue_pc;
00571 
00572   /* The address of the next instruction.  */
00573   CORE_ADDR next_pc;
00574 
00575   /* The upper bound to of the pc values to scan.  */
00576   CORE_ADDR lim_pc;
00577 
00578   memset (gr_saved, 0, sizeof (gr_saved));
00579 
00580   last_prologue_pc = pc;
00581 
00582   /* Try to compute an upper limit (on how far to scan) based on the
00583      line number info.  */
00584   lim_pc = skip_prologue_using_sal (gdbarch, pc);
00585   /* If there's no line number info, lim_pc will be 0.  In that case,
00586      set the limit to be 100 instructions away from pc.  Hopefully, this
00587      will be far enough away to account for the entire prologue.  Don't
00588      worry about overshooting the end of the function.  The scan loop
00589      below contains some checks to avoid scanning unreasonably far.  */
00590   if (lim_pc == 0)
00591     lim_pc = pc + 400;
00592 
00593   /* If we have a frame, we don't want to scan past the frame's pc.  This
00594      will catch those cases where the pc is in the prologue.  */
00595   if (this_frame)
00596     {
00597       CORE_ADDR frame_pc = get_frame_pc (this_frame);
00598       if (frame_pc < lim_pc)
00599         lim_pc = frame_pc;
00600     }
00601 
00602   /* Scan the prologue.  */
00603   while (pc < lim_pc)
00604     {
00605       gdb_byte buf[frv_instr_size];
00606       LONGEST op;
00607 
00608       if (target_read_memory (pc, buf, sizeof buf) != 0)
00609         break;
00610       op = extract_signed_integer (buf, sizeof buf, byte_order);
00611 
00612       next_pc = pc + 4;
00613 
00614       /* The tests in this chain of ifs should be in order of
00615          decreasing selectivity, so that more particular patterns get
00616          to fire before less particular patterns.  */
00617 
00618       /* Some sort of control transfer instruction: stop scanning prologue.
00619          Integer Conditional Branch:
00620           X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
00621          Floating-point / media Conditional Branch:
00622           X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
00623          LCR Conditional Branch to LR
00624           X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
00625          Integer conditional Branches to LR
00626           X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
00627           X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
00628          Floating-point/Media Branches to LR
00629           X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
00630           X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
00631          Jump and Link
00632           X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
00633           X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
00634          Call
00635           X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
00636          Return from Trap
00637           X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
00638          Integer Conditional Trap
00639           X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
00640           X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
00641          Floating-point /media Conditional Trap
00642           X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
00643           X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
00644          Break
00645           X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
00646          Media Trap
00647           X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
00648       if ((op & 0x01d80000) == 0x00180000 /* Conditional branches and Call */
00649           || (op & 0x01f80000) == 0x00300000  /* Jump and Link */
00650           || (op & 0x01f80000) == 0x00100000  /* Return from Trap, Trap */
00651           || (op & 0x01f80000) == 0x00700000) /* Trap immediate */
00652         {
00653           /* Stop scanning; not in prologue any longer.  */
00654           break;
00655         }
00656 
00657       /* Loading something from memory into fp probably means that
00658          we're in the epilogue.  Stop scanning the prologue.
00659          ld @(GRi, GRk), fp
00660          X 000010 0000010 XXXXXX 000100 XXXXXX
00661          ldi @(GRi, d12), fp
00662          X 000010 0110010 XXXXXX XXXXXXXXXXXX */
00663       else if ((op & 0x7ffc0fc0) == 0x04080100
00664                || (op & 0x7ffc0000) == 0x04c80000)
00665         {
00666           break;
00667         }
00668 
00669       /* Setting the FP from the SP:
00670          ori sp, 0, fp
00671          P 000010 0100010 000001 000000000000 = 0x04881000
00672          0 111111 1111111 111111 111111111111 = 0x7fffffff
00673              .    .   .    .   .    .   .   .
00674          We treat this as part of the prologue.  */
00675       else if ((op & 0x7fffffff) == 0x04881000)
00676         {
00677           fp_set = 1;
00678           fp_offset = 0;
00679           last_prologue_pc = next_pc;
00680         }
00681 
00682       /* Move the link register to the scratch register grJ, before saving:
00683          movsg lr, grJ
00684          P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
00685          0 111111 1111111 111111 111111 000000 = 0x7fffffc0
00686              .    .   .    .   .    .    .   .
00687          We treat this as part of the prologue.  */
00688       else if ((op & 0x7fffffc0) == 0x080d01c0)
00689         {
00690           int gr_j = op & 0x3f;
00691 
00692           /* If we're moving it to a scratch register, that's fine.  */
00693           if (is_caller_saves_reg (gr_j))
00694             {
00695               lr_save_reg = gr_j;
00696               last_prologue_pc = next_pc;
00697             }
00698         }
00699 
00700       /* To save multiple callee-saves registers on the stack, at
00701          offset zero:
00702 
00703          std grK,@(sp,gr0)
00704          P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
00705          0 000000 1111111 111111 111111 111111 = 0x01ffffff
00706 
00707          stq grK,@(sp,gr0)
00708          P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
00709          0 000000 1111111 111111 111111 111111 = 0x01ffffff
00710              .    .   .    .   .    .    .   .
00711          We treat this as part of the prologue, and record the register's
00712          saved address in the frame structure.  */
00713       else if ((op & 0x01ffffff) == 0x000c10c0
00714             || (op & 0x01ffffff) == 0x000c1100)
00715         {
00716           int gr_k = ((op >> 25) & 0x3f);
00717           int ope  = ((op >> 6)  & 0x3f);
00718           int count;
00719           int i;
00720 
00721           /* Is it an std or an stq?  */
00722           if (ope == 0x03)
00723             count = 2;
00724           else
00725             count = 4;
00726 
00727           /* Is it really a callee-saves register?  */
00728           if (is_callee_saves_reg (gr_k))
00729             {
00730               for (i = 0; i < count; i++)
00731                 {
00732                   gr_saved[gr_k + i] = 1;
00733                   gr_sp_offset[gr_k + i] = 4 * i;
00734                 }
00735               last_prologue_pc = next_pc;
00736             }
00737         }
00738 
00739       /* Adjusting the stack pointer.  (The stack pointer is GR1.)
00740          addi sp, S, sp
00741          P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
00742          0 111111 1111111 111111 000000000000 = 0x7ffff000
00743              .    .   .    .   .    .   .   .
00744          We treat this as part of the prologue.  */
00745       else if ((op & 0x7ffff000) == 0x02401000)
00746         {
00747           if (framesize == 0)
00748             {
00749               /* Sign-extend the twelve-bit field.
00750                  (Isn't there a better way to do this?)  */
00751               int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
00752 
00753               framesize -= s;
00754               last_prologue_pc = pc;
00755             }
00756           else
00757             {
00758               /* If the prologue is being adjusted again, we've
00759                  likely gone too far; i.e. we're probably in the
00760                  epilogue.  */
00761               break;
00762             }
00763         }
00764 
00765       /* Setting the FP to a constant distance from the SP:
00766          addi sp, S, fp
00767          P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
00768          0 111111 1111111 111111 000000000000 = 0x7ffff000
00769              .    .   .    .   .    .   .   .
00770          We treat this as part of the prologue.  */
00771       else if ((op & 0x7ffff000) == 0x04401000)
00772         {
00773           /* Sign-extend the twelve-bit field.
00774              (Isn't there a better way to do this?)  */
00775           int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
00776           fp_set = 1;
00777           fp_offset = s;
00778           last_prologue_pc = pc;
00779         }
00780 
00781       /* To spill an argument register to a scratch register:
00782             ori GRi, 0, GRk
00783          P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
00784          0 000000 1111111 000000 111111111111 = 0x01fc0fff
00785              .    .   .    .   .    .   .   .
00786          For the time being, we treat this as a prologue instruction,
00787          assuming that GRi is an argument register.  This one's kind
00788          of suspicious, because it seems like it could be part of a
00789          legitimate body instruction.  But we only come here when the
00790          source info wasn't helpful, so we have to do the best we can.
00791          Hopefully once GCC and GDB agree on how to emit line number
00792          info for prologues, then this code will never come into play.  */
00793       else if ((op & 0x01fc0fff) == 0x00880000)
00794         {
00795           int gr_i = ((op >> 12) & 0x3f);
00796 
00797           /* Make sure that the source is an arg register; if it is, we'll
00798              treat it as a prologue instruction.  */
00799           if (is_argument_reg (gr_i))
00800             last_prologue_pc = next_pc;
00801         }
00802 
00803       /* To spill 16-bit values to the stack:
00804              sthi GRk, @(fp, s)
00805          P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
00806          0 000000 1111111 111111 000000000000 = 0x01fff000
00807              .    .   .    .   .    .   .   . 
00808          And for 8-bit values, we use STB instructions.
00809              stbi GRk, @(fp, s)
00810          P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
00811          0 000000 1111111 111111 000000000000 = 0x01fff000
00812              .    .   .    .   .    .   .   .
00813          We check that GRk is really an argument register, and treat
00814          all such as part of the prologue.  */
00815       else if (   (op & 0x01fff000) == 0x01442000
00816                || (op & 0x01fff000) == 0x01402000)
00817         {
00818           int gr_k = ((op >> 25) & 0x3f);
00819 
00820           /* Make sure that GRk is really an argument register; treat
00821              it as a prologue instruction if so.  */
00822           if (is_argument_reg (gr_k))
00823             last_prologue_pc = next_pc;
00824         }
00825 
00826       /* To save multiple callee-saves register on the stack, at a
00827          non-zero offset:
00828 
00829          stdi GRk, @(sp, s)
00830          P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
00831          0 000000 1111111 111111 000000000000 = 0x01fff000
00832              .    .   .    .   .    .   .   .
00833          stqi GRk, @(sp, s)
00834          P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
00835          0 000000 1111111 111111 000000000000 = 0x01fff000
00836              .    .   .    .   .    .   .   .
00837          We treat this as part of the prologue, and record the register's
00838          saved address in the frame structure.  */
00839       else if ((op & 0x01fff000) == 0x014c1000
00840             || (op & 0x01fff000) == 0x01501000)
00841         {
00842           int gr_k = ((op >> 25) & 0x3f);
00843           int count;
00844           int i;
00845 
00846           /* Is it a stdi or a stqi?  */
00847           if ((op & 0x01fff000) == 0x014c1000)
00848             count = 2;
00849           else
00850             count = 4;
00851 
00852           /* Is it really a callee-saves register?  */
00853           if (is_callee_saves_reg (gr_k))
00854             {
00855               /* Sign-extend the twelve-bit field.
00856                  (Isn't there a better way to do this?)  */
00857               int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
00858 
00859               for (i = 0; i < count; i++)
00860                 {
00861                   gr_saved[gr_k + i] = 1;
00862                   gr_sp_offset[gr_k + i] = s + (4 * i);
00863                 }
00864               last_prologue_pc = next_pc;
00865             }
00866         }
00867 
00868       /* Storing any kind of integer register at any constant offset
00869          from any other register.
00870 
00871          st GRk, @(GRi, gr0)
00872          P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
00873          0 000000 1111111 000000 111111 111111 = 0x01fc0fff
00874              .    .   .    .   .    .    .   .
00875          sti GRk, @(GRi, d12)
00876          P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
00877          0 000000 1111111 000000 000000000000 = 0x01fc0000
00878              .    .   .    .   .    .   .   .
00879          These could be almost anything, but a lot of prologue
00880          instructions fall into this pattern, so let's decode the
00881          instruction once, and then work at a higher level.  */
00882       else if (((op & 0x01fc0fff) == 0x000c0080)
00883             || ((op & 0x01fc0000) == 0x01480000))
00884         {
00885           int gr_k = ((op >> 25) & 0x3f);
00886           int gr_i = ((op >> 12) & 0x3f);
00887           int offset;
00888 
00889           /* Are we storing with gr0 as an offset, or using an
00890              immediate value?  */
00891           if ((op & 0x01fc0fff) == 0x000c0080)
00892             offset = 0;
00893           else
00894             offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800;
00895 
00896           /* If the address isn't relative to the SP or FP, it's not a
00897              prologue instruction.  */
00898           if (gr_i != sp_regnum && gr_i != fp_regnum)
00899             {
00900               /* Do nothing; not a prologue instruction.  */
00901             }
00902 
00903           /* Saving the old FP in the new frame (relative to the SP).  */
00904           else if (gr_k == fp_regnum && gr_i == sp_regnum)
00905             {
00906               gr_saved[fp_regnum] = 1;
00907               gr_sp_offset[fp_regnum] = offset;
00908               last_prologue_pc = next_pc;
00909             }
00910 
00911           /* Saving callee-saves register(s) on the stack, relative to
00912              the SP.  */
00913           else if (gr_i == sp_regnum
00914                    && is_callee_saves_reg (gr_k))
00915             {
00916               gr_saved[gr_k] = 1;
00917               if (gr_i == sp_regnum)
00918                 gr_sp_offset[gr_k] = offset;
00919               else
00920                 gr_sp_offset[gr_k] = offset + fp_offset;
00921               last_prologue_pc = next_pc;
00922             }
00923 
00924           /* Saving the scratch register holding the return address.  */
00925           else if (lr_save_reg != -1
00926                    && gr_k == lr_save_reg)
00927             {
00928               lr_saved_on_stack = 1;
00929               if (gr_i == sp_regnum)
00930                 lr_sp_offset = offset;
00931               else
00932                 lr_sp_offset = offset + fp_offset;
00933               last_prologue_pc = next_pc;
00934             }
00935 
00936           /* Spilling int-sized arguments to the stack.  */
00937           else if (is_argument_reg (gr_k))
00938             last_prologue_pc = next_pc;
00939         }
00940       pc = next_pc;
00941     }
00942 
00943   if (this_frame && info)
00944     {
00945       int i;
00946       ULONGEST this_base;
00947 
00948       /* If we know the relationship between the stack and frame
00949          pointers, record the addresses of the registers we noticed.
00950          Note that we have to do this as a separate step at the end,
00951          because instructions may save relative to the SP, but we need
00952          their addresses relative to the FP.  */
00953       if (fp_set)
00954         this_base = get_frame_register_unsigned (this_frame, fp_regnum);
00955       else
00956         this_base = get_frame_register_unsigned (this_frame, sp_regnum);
00957 
00958       for (i = 0; i < 64; i++)
00959         if (gr_saved[i])
00960           info->saved_regs[i].addr = this_base - fp_offset + gr_sp_offset[i];
00961 
00962       info->prev_sp = this_base - fp_offset + framesize;
00963       info->base = this_base;
00964 
00965       /* If LR was saved on the stack, record its location.  */
00966       if (lr_saved_on_stack)
00967         info->saved_regs[lr_regnum].addr
00968           = this_base - fp_offset + lr_sp_offset;
00969 
00970       /* The call instruction moves the caller's PC in the callee's LR.
00971          Since this is an unwind, do the reverse.  Copy the location of LR
00972          into PC (the address / regnum) so that a request for PC will be
00973          converted into a request for the LR.  */
00974       info->saved_regs[pc_regnum] = info->saved_regs[lr_regnum];
00975 
00976       /* Save the previous frame's computed SP value.  */
00977       trad_frame_set_value (info->saved_regs, sp_regnum, info->prev_sp);
00978     }
00979 
00980   return last_prologue_pc;
00981 }
00982 
00983 
00984 static CORE_ADDR
00985 frv_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
00986 {
00987   CORE_ADDR func_addr, func_end, new_pc;
00988 
00989   new_pc = pc;
00990 
00991   /* If the line table has entry for a line *within* the function
00992      (i.e., not in the prologue, and not past the end), then that's
00993      our location.  */
00994   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
00995     {
00996       struct symtab_and_line sal;
00997 
00998       sal = find_pc_line (func_addr, 0);
00999 
01000       if (sal.line != 0 && sal.end < func_end)
01001         {
01002           new_pc = sal.end;
01003         }
01004     }
01005 
01006   /* The FR-V prologue is at least five instructions long (twenty bytes).
01007      If we didn't find a real source location past that, then
01008      do a full analysis of the prologue.  */
01009   if (new_pc < pc + 20)
01010     new_pc = frv_analyze_prologue (gdbarch, pc, 0, 0);
01011 
01012   return new_pc;
01013 }
01014 
01015 
01016 /* Examine the instruction pointed to by PC.  If it corresponds to
01017    a call to __main, return the address of the next instruction.
01018    Otherwise, return PC.  */
01019 
01020 static CORE_ADDR
01021 frv_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
01022 {
01023   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01024   gdb_byte buf[4];
01025   unsigned long op;
01026   CORE_ADDR orig_pc = pc;
01027 
01028   if (target_read_memory (pc, buf, 4))
01029     return pc;
01030   op = extract_unsigned_integer (buf, 4, byte_order);
01031 
01032   /* In PIC code, GR15 may be loaded from some offset off of FP prior
01033      to the call instruction.
01034      
01035      Skip over this instruction if present.  It won't be present in
01036      non-PIC code, and even in PIC code, it might not be present.
01037      (This is due to the fact that GR15, the FDPIC register, already
01038      contains the correct value.)
01039 
01040      The general form of the LDI is given first, followed by the
01041      specific instruction with the GRi and GRk filled in as FP and
01042      GR15.
01043 
01044      ldi @(GRi, d12), GRk
01045      P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
01046      0 000000 1111111 000000 000000000000 = 0x01fc0000
01047          .    .   .    .   .    .   .   .
01048      ldi @(FP, d12), GR15
01049      P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
01050      0 001111 1111111 000010 000000000000 = 0x7ffff000
01051          .    .   .    .   .    .   .   .               */
01052 
01053   if ((op & 0x7ffff000) == 0x1ec82000)
01054     {
01055       pc += 4;
01056       if (target_read_memory (pc, buf, 4))
01057         return orig_pc;
01058       op = extract_unsigned_integer (buf, 4, byte_order);
01059     }
01060 
01061   /* The format of an FRV CALL instruction is as follows:
01062 
01063      call label24
01064      P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
01065      0 000000 1111111 000000000000000000 = 0x01fc0000
01066          .    .   .    .   .   .   .   .
01067 
01068      where label24 is constructed by concatenating the H bits with the
01069      L bits.  The call target is PC + (4 * sign_ext(label24)).  */
01070 
01071   if ((op & 0x01fc0000) == 0x003c0000)
01072     {
01073       LONGEST displ;
01074       CORE_ADDR call_dest;
01075       struct bound_minimal_symbol s;
01076 
01077       displ = ((op & 0xfe000000) >> 7) | (op & 0x0003ffff);
01078       if ((displ & 0x00800000) != 0)
01079         displ |= ~((LONGEST) 0x00ffffff);
01080 
01081       call_dest = pc + 4 * displ;
01082       s = lookup_minimal_symbol_by_pc (call_dest);
01083 
01084       if (s.minsym != NULL
01085           && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
01086           && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
01087         {
01088           pc += 4;
01089           return pc;
01090         }
01091     }
01092   return orig_pc;
01093 }
01094 
01095 
01096 static struct frv_unwind_cache *
01097 frv_frame_unwind_cache (struct frame_info *this_frame,
01098                          void **this_prologue_cache)
01099 {
01100   struct gdbarch *gdbarch = get_frame_arch (this_frame);
01101   struct frv_unwind_cache *info;
01102 
01103   if ((*this_prologue_cache))
01104     return (*this_prologue_cache);
01105 
01106   info = FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache);
01107   (*this_prologue_cache) = info;
01108   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
01109 
01110   /* Prologue analysis does the rest...  */
01111   frv_analyze_prologue (gdbarch,
01112                         get_frame_func (this_frame), this_frame, info);
01113 
01114   return info;
01115 }
01116 
01117 static void
01118 frv_extract_return_value (struct type *type, struct regcache *regcache,
01119                           gdb_byte *valbuf)
01120 {
01121   struct gdbarch *gdbarch = get_regcache_arch (regcache);
01122   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01123   int len = TYPE_LENGTH (type);
01124 
01125   if (len <= 4)
01126     {
01127       ULONGEST gpr8_val;
01128       regcache_cooked_read_unsigned (regcache, 8, &gpr8_val);
01129       store_unsigned_integer (valbuf, len, byte_order, gpr8_val);
01130     }
01131   else if (len == 8)
01132     {
01133       ULONGEST regval;
01134 
01135       regcache_cooked_read_unsigned (regcache, 8, &regval);
01136       store_unsigned_integer (valbuf, 4, byte_order, regval);
01137       regcache_cooked_read_unsigned (regcache, 9, &regval);
01138       store_unsigned_integer ((bfd_byte *) valbuf + 4, 4, byte_order, regval);
01139     }
01140   else
01141     internal_error (__FILE__, __LINE__,
01142                     _("Illegal return value length: %d"), len);
01143 }
01144 
01145 static CORE_ADDR
01146 frv_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
01147 {
01148   /* Require dword alignment.  */
01149   return align_down (sp, 8);
01150 }
01151 
01152 static CORE_ADDR
01153 find_func_descr (struct gdbarch *gdbarch, CORE_ADDR entry_point)
01154 {
01155   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01156   CORE_ADDR descr;
01157   gdb_byte valbuf[4];
01158   CORE_ADDR start_addr;
01159 
01160   /* If we can't find the function in the symbol table, then we assume
01161      that the function address is already in descriptor form.  */
01162   if (!find_pc_partial_function (entry_point, NULL, &start_addr, NULL)
01163       || entry_point != start_addr)
01164     return entry_point;
01165 
01166   descr = frv_fdpic_find_canonical_descriptor (entry_point);
01167 
01168   if (descr != 0)
01169     return descr;
01170 
01171   /* Construct a non-canonical descriptor from space allocated on
01172      the stack.  */
01173 
01174   descr = value_as_long (value_allocate_space_in_inferior (8));
01175   store_unsigned_integer (valbuf, 4, byte_order, entry_point);
01176   write_memory (descr, valbuf, 4);
01177   store_unsigned_integer (valbuf, 4, byte_order,
01178                           frv_fdpic_find_global_pointer (entry_point));
01179   write_memory (descr + 4, valbuf, 4);
01180   return descr;
01181 }
01182 
01183 static CORE_ADDR
01184 frv_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
01185                                 struct target_ops *targ)
01186 {
01187   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01188   CORE_ADDR entry_point;
01189   CORE_ADDR got_address;
01190 
01191   entry_point = get_target_memory_unsigned (targ, addr, 4, byte_order);
01192   got_address = get_target_memory_unsigned (targ, addr + 4, 4, byte_order);
01193 
01194   if (got_address == frv_fdpic_find_global_pointer (entry_point))
01195     return entry_point;
01196   else
01197     return addr;
01198 }
01199 
01200 static CORE_ADDR
01201 frv_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
01202                      struct regcache *regcache, CORE_ADDR bp_addr,
01203                      int nargs, struct value **args, CORE_ADDR sp,
01204                      int struct_return, CORE_ADDR struct_addr)
01205 {
01206   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
01207   int argreg;
01208   int argnum;
01209   const gdb_byte *val;
01210   gdb_byte valbuf[4];
01211   struct value *arg;
01212   struct type *arg_type;
01213   int len;
01214   enum type_code typecode;
01215   CORE_ADDR regval;
01216   int stack_space;
01217   int stack_offset;
01218   enum frv_abi abi = frv_abi (gdbarch);
01219   CORE_ADDR func_addr = find_function_addr (function, NULL);
01220 
01221 #if 0
01222   printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
01223          nargs, (int) sp, struct_return, struct_addr);
01224 #endif
01225 
01226   stack_space = 0;
01227   for (argnum = 0; argnum < nargs; ++argnum)
01228     stack_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
01229 
01230   stack_space -= (6 * 4);
01231   if (stack_space > 0)
01232     sp -= stack_space;
01233 
01234   /* Make sure stack is dword aligned.  */
01235   sp = align_down (sp, 8);
01236 
01237   stack_offset = 0;
01238 
01239   argreg = 8;
01240 
01241   if (struct_return)
01242     regcache_cooked_write_unsigned (regcache, struct_return_regnum,
01243                                     struct_addr);
01244 
01245   for (argnum = 0; argnum < nargs; ++argnum)
01246     {
01247       arg = args[argnum];
01248       arg_type = check_typedef (value_type (arg));
01249       len = TYPE_LENGTH (arg_type);
01250       typecode = TYPE_CODE (arg_type);
01251 
01252       if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
01253         {
01254           store_unsigned_integer (valbuf, 4, byte_order,
01255                                   value_address (arg));
01256           typecode = TYPE_CODE_PTR;
01257           len = 4;
01258           val = valbuf;
01259         }
01260       else if (abi == FRV_ABI_FDPIC
01261                && len == 4
01262                && typecode == TYPE_CODE_PTR
01263                && TYPE_CODE (TYPE_TARGET_TYPE (arg_type)) == TYPE_CODE_FUNC)
01264         {
01265           /* The FDPIC ABI requires function descriptors to be passed instead
01266              of entry points.  */
01267           CORE_ADDR addr = extract_unsigned_integer
01268                              (value_contents (arg), 4, byte_order);
01269           addr = find_func_descr (gdbarch, addr);
01270           store_unsigned_integer (valbuf, 4, byte_order, addr);
01271           typecode = TYPE_CODE_PTR;
01272           len = 4;
01273           val = valbuf;
01274         }
01275       else
01276         {
01277           val = value_contents (arg);
01278         }
01279 
01280       while (len > 0)
01281         {
01282           int partial_len = (len < 4 ? len : 4);
01283 
01284           if (argreg < 14)
01285             {
01286               regval = extract_unsigned_integer (val, partial_len, byte_order);
01287 #if 0
01288               printf("  Argnum %d data %x -> reg %d\n",
01289                      argnum, (int) regval, argreg);
01290 #endif
01291               regcache_cooked_write_unsigned (regcache, argreg, regval);
01292               ++argreg;
01293             }
01294           else
01295             {
01296 #if 0
01297               printf("  Argnum %d data %x -> offset %d (%x)\n",
01298                      argnum, *((int *)val), stack_offset,
01299                      (int) (sp + stack_offset));
01300 #endif
01301               write_memory (sp + stack_offset, val, partial_len);
01302               stack_offset += align_up (partial_len, 4);
01303             }
01304           len -= partial_len;
01305           val += partial_len;
01306         }
01307     }
01308 
01309   /* Set the return address.  For the frv, the return breakpoint is
01310      always at BP_ADDR.  */
01311   regcache_cooked_write_unsigned (regcache, lr_regnum, bp_addr);
01312 
01313   if (abi == FRV_ABI_FDPIC)
01314     {
01315       /* Set the GOT register for the FDPIC ABI.  */
01316       regcache_cooked_write_unsigned
01317         (regcache, first_gpr_regnum + 15,
01318          frv_fdpic_find_global_pointer (func_addr));
01319     }
01320 
01321   /* Finally, update the SP register.  */
01322   regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
01323 
01324   return sp;
01325 }
01326 
01327 static void
01328 frv_store_return_value (struct type *type, struct regcache *regcache,
01329                         const gdb_byte *valbuf)
01330 {
01331   int len = TYPE_LENGTH (type);
01332 
01333   if (len <= 4)
01334     {
01335       bfd_byte val[4];
01336       memset (val, 0, sizeof (val));
01337       memcpy (val + (4 - len), valbuf, len);
01338       regcache_cooked_write (regcache, 8, val);
01339     }
01340   else if (len == 8)
01341     {
01342       regcache_cooked_write (regcache, 8, valbuf);
01343       regcache_cooked_write (regcache, 9, (bfd_byte *) valbuf + 4);
01344     }
01345   else
01346     internal_error (__FILE__, __LINE__,
01347                     _("Don't know how to return a %d-byte value."), len);
01348 }
01349 
01350 static enum return_value_convention
01351 frv_return_value (struct gdbarch *gdbarch, struct value *function,
01352                   struct type *valtype, struct regcache *regcache,
01353                   gdb_byte *readbuf, const gdb_byte *writebuf)
01354 {
01355   int struct_return = TYPE_CODE (valtype) == TYPE_CODE_STRUCT
01356                       || TYPE_CODE (valtype) == TYPE_CODE_UNION
01357                       || TYPE_CODE (valtype) == TYPE_CODE_ARRAY;
01358 
01359   if (writebuf != NULL)
01360     {
01361       gdb_assert (!struct_return);
01362       frv_store_return_value (valtype, regcache, writebuf);
01363     }
01364 
01365   if (readbuf != NULL)
01366     {
01367       gdb_assert (!struct_return);
01368       frv_extract_return_value (valtype, regcache, readbuf);
01369     }
01370 
01371   if (struct_return)
01372     return RETURN_VALUE_STRUCT_CONVENTION;
01373   else
01374     return RETURN_VALUE_REGISTER_CONVENTION;
01375 }
01376 
01377 static CORE_ADDR
01378 frv_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
01379 {
01380   return frame_unwind_register_unsigned (next_frame, pc_regnum);
01381 }
01382 
01383 /* Given a GDB frame, determine the address of the calling function's
01384    frame.  This will be used to create a new GDB frame struct.  */
01385 
01386 static void
01387 frv_frame_this_id (struct frame_info *this_frame,
01388                     void **this_prologue_cache, struct frame_id *this_id)
01389 {
01390   struct frv_unwind_cache *info
01391     = frv_frame_unwind_cache (this_frame, this_prologue_cache);
01392   CORE_ADDR base;
01393   CORE_ADDR func;
01394   struct minimal_symbol *msym_stack;
01395   struct frame_id id;
01396 
01397   /* The FUNC is easy.  */
01398   func = get_frame_func (this_frame);
01399 
01400   /* Check if the stack is empty.  */
01401   msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
01402   if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
01403     return;
01404 
01405   /* Hopefully the prologue analysis either correctly determined the
01406      frame's base (which is the SP from the previous frame), or set
01407      that base to "NULL".  */
01408   base = info->prev_sp;
01409   if (base == 0)
01410     return;
01411 
01412   id = frame_id_build (base, func);
01413   (*this_id) = id;
01414 }
01415 
01416 static struct value *
01417 frv_frame_prev_register (struct frame_info *this_frame,
01418                          void **this_prologue_cache, int regnum)
01419 {
01420   struct frv_unwind_cache *info
01421     = frv_frame_unwind_cache (this_frame, this_prologue_cache);
01422   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
01423 }
01424 
01425 static const struct frame_unwind frv_frame_unwind = {
01426   NORMAL_FRAME,
01427   default_frame_unwind_stop_reason,
01428   frv_frame_this_id,
01429   frv_frame_prev_register,
01430   NULL,
01431   default_frame_sniffer
01432 };
01433 
01434 static CORE_ADDR
01435 frv_frame_base_address (struct frame_info *this_frame, void **this_cache)
01436 {
01437   struct frv_unwind_cache *info
01438     = frv_frame_unwind_cache (this_frame, this_cache);
01439   return info->base;
01440 }
01441 
01442 static const struct frame_base frv_frame_base = {
01443   &frv_frame_unwind,
01444   frv_frame_base_address,
01445   frv_frame_base_address,
01446   frv_frame_base_address
01447 };
01448 
01449 static CORE_ADDR
01450 frv_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
01451 {
01452   return frame_unwind_register_unsigned (next_frame, sp_regnum);
01453 }
01454 
01455 
01456 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
01457    frame.  The frame ID's base needs to match the TOS value saved by
01458    save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint.  */
01459 
01460 static struct frame_id
01461 frv_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
01462 {
01463   CORE_ADDR sp = get_frame_register_unsigned (this_frame, sp_regnum);
01464   return frame_id_build (sp, get_frame_pc (this_frame));
01465 }
01466 
01467 static struct gdbarch *
01468 frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
01469 {
01470   struct gdbarch *gdbarch;
01471   struct gdbarch_tdep *var;
01472   int elf_flags = 0;
01473 
01474   /* Check to see if we've already built an appropriate architecture
01475      object for this executable.  */
01476   arches = gdbarch_list_lookup_by_info (arches, &info);
01477   if (arches)
01478     return arches->gdbarch;
01479 
01480   /* Select the right tdep structure for this variant.  */
01481   var = new_variant ();
01482   switch (info.bfd_arch_info->mach)
01483     {
01484     case bfd_mach_frv:
01485     case bfd_mach_frvsimple:
01486     case bfd_mach_fr500:
01487     case bfd_mach_frvtomcat:
01488     case bfd_mach_fr550:
01489       set_variant_num_gprs (var, 64);
01490       set_variant_num_fprs (var, 64);
01491       break;
01492 
01493     case bfd_mach_fr400:
01494     case bfd_mach_fr450:
01495       set_variant_num_gprs (var, 32);
01496       set_variant_num_fprs (var, 32);
01497       break;
01498 
01499     default:
01500       /* Never heard of this variant.  */
01501       return 0;
01502     }
01503 
01504   /* Extract the ELF flags, if available.  */
01505   if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
01506     elf_flags = elf_elfheader (info.abfd)->e_flags;
01507 
01508   if (elf_flags & EF_FRV_FDPIC)
01509     set_variant_abi_fdpic (var);
01510 
01511   if (elf_flags & EF_FRV_CPU_FR450)
01512     set_variant_scratch_registers (var);
01513 
01514   gdbarch = gdbarch_alloc (&info, var);
01515 
01516   set_gdbarch_short_bit (gdbarch, 16);
01517   set_gdbarch_int_bit (gdbarch, 32);
01518   set_gdbarch_long_bit (gdbarch, 32);
01519   set_gdbarch_long_long_bit (gdbarch, 64);
01520   set_gdbarch_float_bit (gdbarch, 32);
01521   set_gdbarch_double_bit (gdbarch, 64);
01522   set_gdbarch_long_double_bit (gdbarch, 64);
01523   set_gdbarch_ptr_bit (gdbarch, 32);
01524 
01525   set_gdbarch_num_regs (gdbarch, frv_num_regs);
01526   set_gdbarch_num_pseudo_regs (gdbarch, frv_num_pseudo_regs);
01527 
01528   set_gdbarch_sp_regnum (gdbarch, sp_regnum);
01529   set_gdbarch_deprecated_fp_regnum (gdbarch, fp_regnum);
01530   set_gdbarch_pc_regnum (gdbarch, pc_regnum);
01531 
01532   set_gdbarch_register_name (gdbarch, frv_register_name);
01533   set_gdbarch_register_type (gdbarch, frv_register_type);
01534   set_gdbarch_register_sim_regno (gdbarch, frv_register_sim_regno);
01535 
01536   set_gdbarch_pseudo_register_read (gdbarch, frv_pseudo_register_read);
01537   set_gdbarch_pseudo_register_write (gdbarch, frv_pseudo_register_write);
01538 
01539   set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue);
01540   set_gdbarch_skip_main_prologue (gdbarch, frv_skip_main_prologue);
01541   set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc);
01542   set_gdbarch_adjust_breakpoint_address
01543     (gdbarch, frv_adjust_breakpoint_address);
01544 
01545   set_gdbarch_return_value (gdbarch, frv_return_value);
01546 
01547   /* Frame stuff.  */
01548   set_gdbarch_unwind_pc (gdbarch, frv_unwind_pc);
01549   set_gdbarch_unwind_sp (gdbarch, frv_unwind_sp);
01550   set_gdbarch_frame_align (gdbarch, frv_frame_align);
01551   frame_base_set_default (gdbarch, &frv_frame_base);
01552   /* We set the sniffer lower down after the OSABI hooks have been
01553      established.  */
01554 
01555   /* Settings for calling functions in the inferior.  */
01556   set_gdbarch_push_dummy_call (gdbarch, frv_push_dummy_call);
01557   set_gdbarch_dummy_id (gdbarch, frv_dummy_id);
01558 
01559   /* Settings that should be unnecessary.  */
01560   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
01561 
01562   /* Hardware watchpoint / breakpoint support.  */
01563   switch (info.bfd_arch_info->mach)
01564     {
01565     case bfd_mach_frv:
01566     case bfd_mach_frvsimple:
01567     case bfd_mach_fr500:
01568     case bfd_mach_frvtomcat:
01569       /* fr500-style hardware debugging support.  */
01570       var->num_hw_watchpoints = 4;
01571       var->num_hw_breakpoints = 4;
01572       break;
01573 
01574     case bfd_mach_fr400:
01575     case bfd_mach_fr450:
01576       /* fr400-style hardware debugging support.  */
01577       var->num_hw_watchpoints = 2;
01578       var->num_hw_breakpoints = 4;
01579       break;
01580 
01581     default:
01582       /* Otherwise, assume we don't have hardware debugging support.  */
01583       var->num_hw_watchpoints = 0;
01584       var->num_hw_breakpoints = 0;
01585       break;
01586     }
01587 
01588   set_gdbarch_print_insn (gdbarch, print_insn_frv);
01589   if (frv_abi (gdbarch) == FRV_ABI_FDPIC)
01590     set_gdbarch_convert_from_func_ptr_addr (gdbarch,
01591                                             frv_convert_from_func_ptr_addr);
01592 
01593   set_solib_ops (gdbarch, &frv_so_ops);
01594 
01595   /* Hook in ABI-specific overrides, if they have been registered.  */
01596   gdbarch_init_osabi (info, gdbarch);
01597 
01598   /* Set the fallback (prologue based) frame sniffer.  */
01599   frame_unwind_append_unwinder (gdbarch, &frv_frame_unwind);
01600 
01601   /* Enable TLS support.  */
01602   set_gdbarch_fetch_tls_load_module_address (gdbarch,
01603                                              frv_fetch_objfile_link_map);
01604 
01605   return gdbarch;
01606 }
01607 
01608 void
01609 _initialize_frv_tdep (void)
01610 {
01611   register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init);
01612 }
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Defines