GDB (API)
/home/stan/gdb/src/gdb/block.c
Go to the documentation of this file.
00001 /* Block-related functions for the GNU debugger, GDB.
00002 
00003    Copyright (C) 2003-2013 Free Software Foundation, Inc.
00004 
00005    This file is part of GDB.
00006 
00007    This program is free software; you can redistribute it and/or modify
00008    it under the terms of the GNU General Public License as published by
00009    the Free Software Foundation; either version 3 of the License, or
00010    (at your option) any later version.
00011 
00012    This program is distributed in the hope that it will be useful,
00013    but WITHOUT ANY WARRANTY; without even the implied warranty of
00014    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00015    GNU General Public License for more details.
00016 
00017    You should have received a copy of the GNU General Public License
00018    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
00019 
00020 #include "defs.h"
00021 #include "block.h"
00022 #include "symtab.h"
00023 #include "symfile.h"
00024 #include "gdb_obstack.h"
00025 #include "cp-support.h"
00026 #include "addrmap.h"
00027 #include "gdbtypes.h"
00028 #include "exceptions.h"
00029 
00030 /* This is used by struct block to store namespace-related info for
00031    C++ files, namely using declarations and the current namespace in
00032    scope.  */
00033 
00034 struct block_namespace_info
00035 {
00036   const char *scope;
00037   struct using_direct *using;
00038 };
00039 
00040 static void block_initialize_namespace (struct block *block,
00041                                         struct obstack *obstack);
00042 
00043 /* Return Nonzero if block a is lexically nested within block b,
00044    or if a and b have the same pc range.
00045    Return zero otherwise.  */
00046 
00047 int
00048 contained_in (const struct block *a, const struct block *b)
00049 {
00050   if (!a || !b)
00051     return 0;
00052 
00053   do
00054     {
00055       if (a == b)
00056         return 1;
00057       /* If A is a function block, then A cannot be contained in B,
00058          except if A was inlined.  */
00059       if (BLOCK_FUNCTION (a) != NULL && !block_inlined_p (a))
00060         return 0;
00061       a = BLOCK_SUPERBLOCK (a);
00062     }
00063   while (a != NULL);
00064 
00065   return 0;
00066 }
00067 
00068 
00069 /* Return the symbol for the function which contains a specified
00070    lexical block, described by a struct block BL.  The return value
00071    will not be an inlined function; the containing function will be
00072    returned instead.  */
00073 
00074 struct symbol *
00075 block_linkage_function (const struct block *bl)
00076 {
00077   while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
00078          && BLOCK_SUPERBLOCK (bl) != NULL)
00079     bl = BLOCK_SUPERBLOCK (bl);
00080 
00081   return BLOCK_FUNCTION (bl);
00082 }
00083 
00084 /* Return the symbol for the function which contains a specified
00085    block, described by a struct block BL.  The return value will be
00086    the closest enclosing function, which might be an inline
00087    function.  */
00088 
00089 struct symbol *
00090 block_containing_function (const struct block *bl)
00091 {
00092   while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
00093     bl = BLOCK_SUPERBLOCK (bl);
00094 
00095   return BLOCK_FUNCTION (bl);
00096 }
00097 
00098 /* Return one if BL represents an inlined function.  */
00099 
00100 int
00101 block_inlined_p (const struct block *bl)
00102 {
00103   return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
00104 }
00105 
00106 /* A helper function that checks whether PC is in the blockvector BL.
00107    It returns the containing block if there is one, or else NULL.  */
00108 
00109 static struct block *
00110 find_block_in_blockvector (struct blockvector *bl, CORE_ADDR pc)
00111 {
00112   struct block *b;
00113   int bot, top, half;
00114 
00115   /* If we have an addrmap mapping code addresses to blocks, then use
00116      that.  */
00117   if (BLOCKVECTOR_MAP (bl))
00118     return addrmap_find (BLOCKVECTOR_MAP (bl), pc);
00119 
00120   /* Otherwise, use binary search to find the last block that starts
00121      before PC.
00122      Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
00123      They both have the same START,END values.
00124      Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
00125      fact that this choice was made was subtle, now we make it explicit.  */
00126   gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
00127   bot = STATIC_BLOCK;
00128   top = BLOCKVECTOR_NBLOCKS (bl);
00129 
00130   while (top - bot > 1)
00131     {
00132       half = (top - bot + 1) >> 1;
00133       b = BLOCKVECTOR_BLOCK (bl, bot + half);
00134       if (BLOCK_START (b) <= pc)
00135         bot += half;
00136       else
00137         top = bot + half;
00138     }
00139 
00140   /* Now search backward for a block that ends after PC.  */
00141 
00142   while (bot >= STATIC_BLOCK)
00143     {
00144       b = BLOCKVECTOR_BLOCK (bl, bot);
00145       if (BLOCK_END (b) > pc)
00146         return b;
00147       bot--;
00148     }
00149 
00150   return NULL;
00151 }
00152 
00153 /* Return the blockvector immediately containing the innermost lexical
00154    block containing the specified pc value and section, or 0 if there
00155    is none.  PBLOCK is a pointer to the block.  If PBLOCK is NULL, we
00156    don't pass this information back to the caller.  */
00157 
00158 struct blockvector *
00159 blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
00160                          struct block **pblock, struct symtab *symtab)
00161 {
00162   struct blockvector *bl;
00163   struct block *b;
00164 
00165   if (symtab == 0)              /* if no symtab specified by caller */
00166     {
00167       /* First search all symtabs for one whose file contains our pc */
00168       symtab = find_pc_sect_symtab (pc, section);
00169       if (symtab == 0)
00170         return 0;
00171     }
00172 
00173   bl = BLOCKVECTOR (symtab);
00174 
00175   /* Then search that symtab for the smallest block that wins.  */
00176   b = find_block_in_blockvector (bl, pc);
00177   if (b == NULL)
00178     return NULL;
00179 
00180   if (pblock)
00181     *pblock = b;
00182   return bl;
00183 }
00184 
00185 /* Return true if the blockvector BV contains PC, false otherwise.  */
00186 
00187 int
00188 blockvector_contains_pc (struct blockvector *bv, CORE_ADDR pc)
00189 {
00190   return find_block_in_blockvector (bv, pc) != NULL;
00191 }
00192 
00193 /* Return call_site for specified PC in GDBARCH.  PC must match exactly, it
00194    must be the next instruction after call (or after tail call jump).  Throw
00195    NO_ENTRY_VALUE_ERROR otherwise.  This function never returns NULL.  */
00196 
00197 struct call_site *
00198 call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
00199 {
00200   struct symtab *symtab;
00201   void **slot = NULL;
00202 
00203   /* -1 as tail call PC can be already after the compilation unit range.  */
00204   symtab = find_pc_symtab (pc - 1);
00205 
00206   if (symtab != NULL && symtab->call_site_htab != NULL)
00207     slot = htab_find_slot (symtab->call_site_htab, &pc, NO_INSERT);
00208 
00209   if (slot == NULL)
00210     {
00211       struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);
00212 
00213       /* DW_TAG_gnu_call_site will be missing just if GCC could not determine
00214          the call target.  */
00215       throw_error (NO_ENTRY_VALUE_ERROR,
00216                    _("DW_OP_GNU_entry_value resolving cannot find "
00217                      "DW_TAG_GNU_call_site %s in %s"),
00218                    paddress (gdbarch, pc),
00219                    (msym.minsym == NULL ? "???"
00220                     : SYMBOL_PRINT_NAME (msym.minsym)));
00221     }
00222 
00223   return *slot;
00224 }
00225 
00226 /* Return the blockvector immediately containing the innermost lexical block
00227    containing the specified pc value, or 0 if there is none.
00228    Backward compatibility, no section.  */
00229 
00230 struct blockvector *
00231 blockvector_for_pc (CORE_ADDR pc, struct block **pblock)
00232 {
00233   return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
00234                                   pblock, NULL);
00235 }
00236 
00237 /* Return the innermost lexical block containing the specified pc value
00238    in the specified section, or 0 if there is none.  */
00239 
00240 struct block *
00241 block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
00242 {
00243   struct blockvector *bl;
00244   struct block *b;
00245 
00246   bl = blockvector_for_pc_sect (pc, section, &b, NULL);
00247   if (bl)
00248     return b;
00249   return 0;
00250 }
00251 
00252 /* Return the innermost lexical block containing the specified pc value,
00253    or 0 if there is none.  Backward compatibility, no section.  */
00254 
00255 struct block *
00256 block_for_pc (CORE_ADDR pc)
00257 {
00258   return block_for_pc_sect (pc, find_pc_mapped_section (pc));
00259 }
00260 
00261 /* Now come some functions designed to deal with C++ namespace issues.
00262    The accessors are safe to use even in the non-C++ case.  */
00263 
00264 /* This returns the namespace that BLOCK is enclosed in, or "" if it
00265    isn't enclosed in a namespace at all.  This travels the chain of
00266    superblocks looking for a scope, if necessary.  */
00267 
00268 const char *
00269 block_scope (const struct block *block)
00270 {
00271   for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
00272     {
00273       if (BLOCK_NAMESPACE (block) != NULL
00274           && BLOCK_NAMESPACE (block)->scope != NULL)
00275         return BLOCK_NAMESPACE (block)->scope;
00276     }
00277 
00278   return "";
00279 }
00280 
00281 /* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
00282    OBSTACK.  (It won't make a copy of SCOPE, however, so that already
00283    has to be allocated correctly.)  */
00284 
00285 void
00286 block_set_scope (struct block *block, const char *scope,
00287                  struct obstack *obstack)
00288 {
00289   block_initialize_namespace (block, obstack);
00290 
00291   BLOCK_NAMESPACE (block)->scope = scope;
00292 }
00293 
00294 /* This returns the using directives list associated with BLOCK, if
00295    any.  */
00296 
00297 struct using_direct *
00298 block_using (const struct block *block)
00299 {
00300   if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
00301     return NULL;
00302   else
00303     return BLOCK_NAMESPACE (block)->using;
00304 }
00305 
00306 /* Set BLOCK's using member to USING; if needed, allocate memory via
00307    OBSTACK.  (It won't make a copy of USING, however, so that already
00308    has to be allocated correctly.)  */
00309 
00310 void
00311 block_set_using (struct block *block,
00312                  struct using_direct *using,
00313                  struct obstack *obstack)
00314 {
00315   block_initialize_namespace (block, obstack);
00316 
00317   BLOCK_NAMESPACE (block)->using = using;
00318 }
00319 
00320 /* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
00321    ititialize its members to zero.  */
00322 
00323 static void
00324 block_initialize_namespace (struct block *block, struct obstack *obstack)
00325 {
00326   if (BLOCK_NAMESPACE (block) == NULL)
00327     {
00328       BLOCK_NAMESPACE (block)
00329         = obstack_alloc (obstack, sizeof (struct block_namespace_info));
00330       BLOCK_NAMESPACE (block)->scope = NULL;
00331       BLOCK_NAMESPACE (block)->using = NULL;
00332     }
00333 }
00334 
00335 /* Return the static block associated to BLOCK.  Return NULL if block
00336    is NULL or if block is a global block.  */
00337 
00338 const struct block *
00339 block_static_block (const struct block *block)
00340 {
00341   if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
00342     return NULL;
00343 
00344   while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
00345     block = BLOCK_SUPERBLOCK (block);
00346 
00347   return block;
00348 }
00349 
00350 /* Return the static block associated to BLOCK.  Return NULL if block
00351    is NULL.  */
00352 
00353 const struct block *
00354 block_global_block (const struct block *block)
00355 {
00356   if (block == NULL)
00357     return NULL;
00358 
00359   while (BLOCK_SUPERBLOCK (block) != NULL)
00360     block = BLOCK_SUPERBLOCK (block);
00361 
00362   return block;
00363 }
00364 
00365 /* Allocate a block on OBSTACK, and initialize its elements to
00366    zero/NULL.  This is useful for creating "dummy" blocks that don't
00367    correspond to actual source files.
00368 
00369    Warning: it sets the block's BLOCK_DICT to NULL, which isn't a
00370    valid value.  If you really don't want the block to have a
00371    dictionary, then you should subsequently set its BLOCK_DICT to
00372    dict_create_linear (obstack, NULL).  */
00373 
00374 struct block *
00375 allocate_block (struct obstack *obstack)
00376 {
00377   struct block *bl = obstack_alloc (obstack, sizeof (struct block));
00378 
00379   BLOCK_START (bl) = 0;
00380   BLOCK_END (bl) = 0;
00381   BLOCK_FUNCTION (bl) = NULL;
00382   BLOCK_SUPERBLOCK (bl) = NULL;
00383   BLOCK_DICT (bl) = NULL;
00384   BLOCK_NAMESPACE (bl) = NULL;
00385 
00386   return bl;
00387 }
00388 
00389 /* Allocate a global block.  */
00390 
00391 struct block *
00392 allocate_global_block (struct obstack *obstack)
00393 {
00394   struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);
00395 
00396   return &bl->block;
00397 }
00398 
00399 /* Set the symtab of the global block.  */
00400 
00401 void
00402 set_block_symtab (struct block *block, struct symtab *symtab)
00403 {
00404   struct global_block *gb;
00405 
00406   gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
00407   gb = (struct global_block *) block;
00408   gdb_assert (gb->symtab == NULL);
00409   gb->symtab = symtab;
00410 }
00411 
00412 /* Return the symtab of the global block.  */
00413 
00414 static struct symtab *
00415 get_block_symtab (const struct block *block)
00416 {
00417   struct global_block *gb;
00418 
00419   gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
00420   gb = (struct global_block *) block;
00421   gdb_assert (gb->symtab != NULL);
00422   return gb->symtab;
00423 }
00424 
00425 
00426 
00427 /* Initialize a block iterator, either to iterate over a single block,
00428    or, for static and global blocks, all the included symtabs as
00429    well.  */
00430 
00431 static void
00432 initialize_block_iterator (const struct block *block,
00433                            struct block_iterator *iter)
00434 {
00435   enum block_enum which;
00436   struct symtab *symtab;
00437 
00438   iter->idx = -1;
00439 
00440   if (BLOCK_SUPERBLOCK (block) == NULL)
00441     {
00442       which = GLOBAL_BLOCK;
00443       symtab = get_block_symtab (block);
00444     }
00445   else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
00446     {
00447       which = STATIC_BLOCK;
00448       symtab = get_block_symtab (BLOCK_SUPERBLOCK (block));
00449     }
00450   else
00451     {
00452       iter->d.block = block;
00453       /* A signal value meaning that we're iterating over a single
00454          block.  */
00455       iter->which = FIRST_LOCAL_BLOCK;
00456       return;
00457     }
00458 
00459   /* If this is an included symtab, find the canonical includer and
00460      use it instead.  */
00461   while (symtab->user != NULL)
00462     symtab = symtab->user;
00463 
00464   /* Putting this check here simplifies the logic of the iterator
00465      functions.  If there are no included symtabs, we only need to
00466      search a single block, so we might as well just do that
00467      directly.  */
00468   if (symtab->includes == NULL)
00469     {
00470       iter->d.block = block;
00471       /* A signal value meaning that we're iterating over a single
00472          block.  */
00473       iter->which = FIRST_LOCAL_BLOCK;
00474     }
00475   else
00476     {
00477       iter->d.symtab = symtab;
00478       iter->which = which;
00479     }
00480 }
00481 
00482 /* A helper function that finds the current symtab over whose static
00483    or global block we should iterate.  */
00484 
00485 static struct symtab *
00486 find_iterator_symtab (struct block_iterator *iterator)
00487 {
00488   if (iterator->idx == -1)
00489     return iterator->d.symtab;
00490   return iterator->d.symtab->includes[iterator->idx];
00491 }
00492 
00493 /* Perform a single step for a plain block iterator, iterating across
00494    symbol tables as needed.  Returns the next symbol, or NULL when
00495    iteration is complete.  */
00496 
00497 static struct symbol *
00498 block_iterator_step (struct block_iterator *iterator, int first)
00499 {
00500   struct symbol *sym;
00501 
00502   gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
00503 
00504   while (1)
00505     {
00506       if (first)
00507         {
00508           struct symtab *symtab = find_iterator_symtab (iterator);
00509           const struct block *block;
00510 
00511           /* Iteration is complete.  */
00512           if (symtab == NULL)
00513             return  NULL;
00514 
00515           block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), iterator->which);
00516           sym = dict_iterator_first (BLOCK_DICT (block), &iterator->dict_iter);
00517         }
00518       else
00519         sym = dict_iterator_next (&iterator->dict_iter);
00520 
00521       if (sym != NULL)
00522         return sym;
00523 
00524       /* We have finished iterating the appropriate block of one
00525          symtab.  Now advance to the next symtab and begin iteration
00526          there.  */
00527       ++iterator->idx;
00528       first = 1;
00529     }
00530 }
00531 
00532 /* See block.h.  */
00533 
00534 struct symbol *
00535 block_iterator_first (const struct block *block,
00536                       struct block_iterator *iterator)
00537 {
00538   initialize_block_iterator (block, iterator);
00539 
00540   if (iterator->which == FIRST_LOCAL_BLOCK)
00541     return dict_iterator_first (block->dict, &iterator->dict_iter);
00542 
00543   return block_iterator_step (iterator, 1);
00544 }
00545 
00546 /* See block.h.  */
00547 
00548 struct symbol *
00549 block_iterator_next (struct block_iterator *iterator)
00550 {
00551   if (iterator->which == FIRST_LOCAL_BLOCK)
00552     return dict_iterator_next (&iterator->dict_iter);
00553 
00554   return block_iterator_step (iterator, 0);
00555 }
00556 
00557 /* Perform a single step for a "name" block iterator, iterating across
00558    symbol tables as needed.  Returns the next symbol, or NULL when
00559    iteration is complete.  */
00560 
00561 static struct symbol *
00562 block_iter_name_step (struct block_iterator *iterator, const char *name,
00563                       int first)
00564 {
00565   struct symbol *sym;
00566 
00567   gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
00568 
00569   while (1)
00570     {
00571       if (first)
00572         {
00573           struct symtab *symtab = find_iterator_symtab (iterator);
00574           const struct block *block;
00575 
00576           /* Iteration is complete.  */
00577           if (symtab == NULL)
00578             return  NULL;
00579 
00580           block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), iterator->which);
00581           sym = dict_iter_name_first (BLOCK_DICT (block), name,
00582                                       &iterator->dict_iter);
00583         }
00584       else
00585         sym = dict_iter_name_next (name, &iterator->dict_iter);
00586 
00587       if (sym != NULL)
00588         return sym;
00589 
00590       /* We have finished iterating the appropriate block of one
00591          symtab.  Now advance to the next symtab and begin iteration
00592          there.  */
00593       ++iterator->idx;
00594       first = 1;
00595     }
00596 }
00597 
00598 /* See block.h.  */
00599 
00600 struct symbol *
00601 block_iter_name_first (const struct block *block,
00602                        const char *name,
00603                        struct block_iterator *iterator)
00604 {
00605   initialize_block_iterator (block, iterator);
00606 
00607   if (iterator->which == FIRST_LOCAL_BLOCK)
00608     return dict_iter_name_first (block->dict, name, &iterator->dict_iter);
00609 
00610   return block_iter_name_step (iterator, name, 1);
00611 }
00612 
00613 /* See block.h.  */
00614 
00615 struct symbol *
00616 block_iter_name_next (const char *name, struct block_iterator *iterator)
00617 {
00618   if (iterator->which == FIRST_LOCAL_BLOCK)
00619     return dict_iter_name_next (name, &iterator->dict_iter);
00620 
00621   return block_iter_name_step (iterator, name, 0);
00622 }
00623 
00624 /* Perform a single step for a "match" block iterator, iterating
00625    across symbol tables as needed.  Returns the next symbol, or NULL
00626    when iteration is complete.  */
00627 
00628 static struct symbol *
00629 block_iter_match_step (struct block_iterator *iterator,
00630                        const char *name,
00631                        symbol_compare_ftype *compare,
00632                        int first)
00633 {
00634   struct symbol *sym;
00635 
00636   gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);
00637 
00638   while (1)
00639     {
00640       if (first)
00641         {
00642           struct symtab *symtab = find_iterator_symtab (iterator);
00643           const struct block *block;
00644 
00645           /* Iteration is complete.  */
00646           if (symtab == NULL)
00647             return  NULL;
00648 
00649           block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (symtab), iterator->which);
00650           sym = dict_iter_match_first (BLOCK_DICT (block), name,
00651                                        compare, &iterator->dict_iter);
00652         }
00653       else
00654         sym = dict_iter_match_next (name, compare, &iterator->dict_iter);
00655 
00656       if (sym != NULL)
00657         return sym;
00658 
00659       /* We have finished iterating the appropriate block of one
00660          symtab.  Now advance to the next symtab and begin iteration
00661          there.  */
00662       ++iterator->idx;
00663       first = 1;
00664     }
00665 }
00666 
00667 /* See block.h.  */
00668 
00669 struct symbol *
00670 block_iter_match_first (const struct block *block,
00671                         const char *name,
00672                         symbol_compare_ftype *compare,
00673                         struct block_iterator *iterator)
00674 {
00675   initialize_block_iterator (block, iterator);
00676 
00677   if (iterator->which == FIRST_LOCAL_BLOCK)
00678     return dict_iter_match_first (block->dict, name, compare,
00679                                   &iterator->dict_iter);
00680 
00681   return block_iter_match_step (iterator, name, compare, 1);
00682 }
00683 
00684 /* See block.h.  */
00685 
00686 struct symbol *
00687 block_iter_match_next (const char *name,
00688                        symbol_compare_ftype *compare,
00689                        struct block_iterator *iterator)
00690 {
00691   if (iterator->which == FIRST_LOCAL_BLOCK)
00692     return dict_iter_match_next (name, compare, &iterator->dict_iter);
00693 
00694   return block_iter_match_step (iterator, name, compare, 0);
00695 }
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Defines